
Yerk Glossary 1

Part IV
The Yerk Glossary

This is a glossary of Yerk words, including only those dictionary entries which are not classes.
Strictly speaking, classes themselves are Yerk words, but since they are discussed amply elsewhere
in this manual, they are not covered thoroughly here. Also excluded are module names, and a
variety of low level words used internally by Yerk.

SOME CONVENTIONS AND DEFINITIONS

Unless states otherwise, the stack comment displays contents of the PARAMETER (data) STACK.
The parameters are ordered from left to right, with rightmost being top of the stack.. parameters to
the left of the hyphens reflect the local stack frame upon entry to the word, and those to the right
reflect the parameters left when the word returns to its caller.

You may find these definitions useful:

memory word 16-bit number.

long memory word 32-bit number.

byte 8-bit number (high 24 bits ignored).

fcb file control block; usually the private data of a File object, it is an
extended File Manager parameter block. It is used in Yerk for file,
volume, and device I/O.

top of stack the 32-bit number in the topmost cell of the Parameter Stack.

The symbols used in the stack comments are:

symbol description

addr memory address.

b 8-bit byte (high 24 bits zero).

bool boolean flag; 0=false, 1=true

Yerk Glossary 2

chr 7-bit ASCII character (high 25 bits zero).

cfa code field address, or compilation address of a word.

Yerk Glossary 3

d signed double number, that is, a 64-bit signed integer; most significant 32 bits
are on top of stack.

T true boolean flag (<>0).

F false boolean flag (=0).

fcb address of file control block.

len usually, length of a string.

lfa link field address.

n signed single number, that is, a 32-bit signed integer.

yerk parameter(s) used by Yerk itself during compilation, etc.

nfa name field address.

pfa parameter field address.

ud unsigned double number, that is, a 64-bit unsigned integer.

un unsigned single number, that is, a 32-bit unsigned integer.

w 16-bit number (higher 16 bits are ignored).

^base "pointer-to-base", base address of an object's private data, same as pfa of the
object.

^class "pointer-to-class", pfa of a class.

^obj "pointer-to-object", pfa of an object, same as ^base.

: The colon will appear after the stack comment of some words. It indicates
that tokens are expected in the input stream. The token(s) required by the
word are listed after the colon.

fptr A pointer to a 10-byte floating point number on the float heap.

token description

word name of a word currently in the dictionary.

name name for a new entry into the dictionary.

_name name of a toolbox routine. The underscore should not be typed in the actual
name.

Yerk Glossary 4

op name of a multiple code field word. "op" is usually a value, vect, local
variable or named input parameter. "->" is an example of a word which
requires an "op" in the input stream.

Yerk Glossary 5

__
! "store" (n addr --)

Stores 32-bit value n at the memory location specified by addr.

See also: c! w! 2! m! mw! 0! @
__
!csp (--)

Saves the current Parameter Stack address in the Value CSP . This word is used in
conjunction with ?CSP to determine if the parameter stack has become unbalanced due to a
compilation error.

__
!fname (addr len fcb --)

Stores a string as the file object specified by fcb.
__
" "quote" Compile: (--) : textString"

Run: (-- addr len)

At compile time, compiles the text which follows in the input stream into the dictionary as a
str255-format string literal. The text is delimited by a second " or a carriage-return. At run
time, puts the counted string literal at buf255, a temporary buffer, and leaves its address and
length on the stack. The first" must be followed by a blank; the first character of the string
literal is the character after this blank.

 Example: : printMsg "Finishing report." type ;

0->printMsg <return>
Finishing report. 0->

\ " used at run time:
0->" Finishing graph." type <return>
Finishing graph. 0->

This is an immediate word.
See also: ."

__
"sharp" (d -- quotient)

Converts a digit into an ASCII character. # is used within a <#...#> sequence to convert an
unsigned double number into a text string. # divides d by the current number base to obtain
the least significant digit and appends the converted digit to the string being built from high

Yerk Glossary 6

to low memory starting one byte below Pad.

 Example: 6 0 <# # # #> type
\ Puts 6 on the stack as a double number and prints:
06 0->

Yerk Glossary 7

2223243 0 <# # # # # $ 2d hold # # # #> type
\ will print:
222-3243 0->

#> "sharp-bracket" (d -- addr len)

Terminates conversion of a double number into a text string. Leaves the beginning address
and length of the converted string.

See also: <#
__
#s "sharp-s" (d -- 0 0)

Converts an unsigned double number into a text string. #s is used within a <#...#> sequence.
#s repeatedly calls # until d is converted completely.

 Example: 2223243 0 <# # # # # $2d hold #s #> type
\ will print (compare with Example for #):
222-3243 0->

__
$ "dollar" (--) : hex#

Converts the word in the input stream into a number treating it as a hexadecimal value, and
then executes LITERAL. If used within a program definition, compiles the number as a
literal, to be placed on the stack at run time; otherwise puts it onto the stack immediately.

 Example: $ ae7f \ Hex AE7F will be put on the stack.

: aWord ... $ 23da ... ;
\ Hex 23DA will be compiled into aWord.

This is an immediate word.
__
$= (addr1 len1 addr2 len2 -- result)

Compares the two strings and returns the following result:

 -1 -- str1 < str2
 0 -- str1 = str2
 1 -- str1 > str2

See also: s= sort
__

Yerk Glossary 8

' "tick" Compile: (--) : word
Run: (-- pfa)

Finds the pfa of the next word in the input stream. If used within a program definition,
compiles the pfa of the word as a literal to be placed on the stack at run

Yerk Glossary 9

time; otherwise puts it onto the stack immediately. Don't use ' in a word or method definition
inside a module, because tick can compile a 16-bit address that is not relocateable. You
may, however, use 'c.

 Example: ' doGraph \Puts the pfa of doGraph on the stack

: aWord ... ' doGraph ... ;
\ Compiles pfa of doGraph as a literal

This is an immediate word.
See also: 'c

__
'c "tick-c" Compile: (--) : word

Run: (-- cfa)

Finds the cfa of the next word in the input stream. If used within a program definition,
compiles the cfa as a literal to be placed on the stack at run time; otherwise puts it onto the
stack immediately. 'C may be used inside modules.

 Example: \ 'c is commonly used to initialize a vect to be used for vectored execution.
'c doPict -> provec \ Puts the cfa doPict into]

\ vect provec.

: aWord ... 'c doPict ... ;
\ Compiles the cfa of doPict into aWord's
\ definition as a literal.

This is an immediate word.
See also: 'cfas

__
'cfas Compile: (n --) : word1 word2 ... wordn

Run: (n -- cfa1 cfa2 ... cfan)

Finds the cfa of the next n word in the input stream. If used within a program definition,
compiles the cfa's of the next n words as literals to be placed on the stack at run time;
otherwise puts them onto the stack immediately. Note that n must be on the stack at compile
time.

 Example: \ Put the cfa's of the 4 action handler words for Window on stack.
4 'cfas close enact draw content

: aWord ...
<[4]> 'cfas close enact draw content
... ;
\ The cfa's of the 4 words will be compiled into the definition of

Yerk Glossary 10

\ aWord . The 4 is flanked by <[and]> to put it on the stack instead
\ of compiling it as a literal.

This is an immediate word.
__

Yerk Glossary 11

'code Compile: (--) : word
Run: (-- cf-contents)

Gets the contents of the code field (i.e., the address of the word's run-time code) of the next
word in the input stream. If used within a program definition, compiles the cf-contents as a
literal to be placed on the stack at run time; otherwise puts it onto the stack immediately.

This is an immediate word.
__
'type (-- n) : type

Takes four ASCII characters out of the input stream and packs them into one 32-bit number
on the stack. The left-most character becomes the highest order byte.

 Example: 'type ABCD .h <return>
41424344 0-> \ ASCII values in hex for ABCD

This is an immediate word.
__
((--)

Denotes beginning of a comment. At least one space must follow (Stack comments are
usually in parentheses in Yerk.

 Example: (This is a comment in parentheses)

This is an immediate word.
__
(@) (addr -- n t or f)

Checks before fetching with @ to make sure the memory belongs to the application heap.
__
((findm)) Successful: (selhash ^class -- 1cfa T)

Unsuccessful: (selhash ^class -- F)

Performs a search to find a method specified by selhash, a selector hash value, in the
superclass chain of the class specified by ^class. If successful, leaves a true flag and the
1cfa of the method; otherwise leaves a false flag. ((findm)) is the primitive used by (findm).

__
(.") (--) : textString"

This is the run-time primitive compiled by ." when it is used in compile state. Expects a

Yerk Glossary 12

string to be compiled into the dictionary immediately following its own cfa. A standard
Forth primitive and probably not otherwise useful.

__

Yerk Glossary 13

(;m) Parameter Stack: (--)
Method Stack: (pN...p0 #parms ^obj --)

This is the run-time primitive compiled by ;m at the end of a method definition. (;m)
removes the parameters and the object address left by the message just executed, then
transfers execution to the next higher level by popping the return address of the calling
word or method off the return stack.

See also: ;s
__
(abs) Parameter Stack: (-- abs:^base)

Method Stack: (^base -- ^base)

Returns the absolute address of the data of the object whose relative address is on top of the
methods stack. You can use (abs) inside a method for Toolbox calls that require the address
of the private data of a Yerk object. See also the Abs: method of class Object.

 Example: \ These methods are in class Rect.
:M INVERT: (abs) call inverRec ;
:M PAINT: (abs) call paintRec ;

See also: ^base
__
(bs) (--)

"Prints a backspace on the Macintosh screen. (bs) moves the cursor back by six pixels and
prints the cursor if cursor display has been turned on with +curs. (bs) will not go left of 8
(local coordinates).

__
(close) (fcb -- ioResult)

Calls the File Manager Close to close the file specified fcb, the address of the file control
block. If successful, ioResult is zero; otherwise, it is non-zero. (close) is the primitive used
by the Close: method of class File.

__
(delete) (fcb -- ioResult)

Calls the File Manager routine Delete to delete the file specified fcb, the address of the file's
file control block. If successful, ioResult is zero; otherwise, it is non-zero. (delete) is the
primitive used by the Delete: method of class File.

__
(emit) (c --)

Yerk Glossary 14

Prints a character on the Macintosh screen using the QuickDraw routine DrawChar. (emit)
is the primitive used by emit to print a character on the screen.

__
(fdos) (fcb trap# -- ioResult)

Yerk Glossary 15

Allows register-based access to Operating System routines requiring a parameter block such
as File Manager routines. Fcb is the address of a file control block and trap# is the trap
number of the system call. If successful, ioResult is zero; otherwise, it is non-zero.

 Example: myfcb setname "myFile" \ Initializes myfcb, a File object.

 myfcb $ A00C (fdos) \ Calls the File Manager routine GetFileInfo
\ (trap# = A00C); the signature, type, etc. of
\ myFile are now in the data of myfcb.

__
(find) Successful: (strAddr nfa -- pfa len T)

Unsuccessful: (strAddr nfa -- F)

Preforms a dictionary search starting from nfa on the stack. (find) looks for a match on the
str255 string at strAddr. The search ends when a 0 link field is encountered, the link field
of the first entry. If successful, at exit, the top of stack contains a true flag, the second cell
contains the byte length of the name field, and the third cell contains the pfa of the "found"
dictionary entry. (find) is the primitive used by Find.

__
(findm) (selhash ^class -- 1cfa)

Performs a high speed search to find a method specified by selhash, a selector hash value, in
the superclass chain of the class specified by ^class. If successful, leaves the 1cfa of the
method. If unsuccessful, prints message: "method not available for class CCCCC" and
aborts.

__
(flush) (w:eventMask w:stopMask --)

With one cell on the stack, the high word being an eventMask and the low word being a
stopMask, flush the corresponding events from the event queue.

See also: (post)
__
(key) (-- keycode)

(key) is the default action for the system vector key and should normally be executed by
that word.

See also: key
__
(install) (addr len --)

Yerk Glossary 16

Sets this string as the name of the application which the nucleus will automatically load
when it is double clicked. Used by the word Finalsave.

__
(intrp) (--)

Yerk Glossary 17

Sequentially executes or compiles text from the input stream depending on state. If a word
name is not found in both the context and current vocabularies, attempts conversion to a
number. If conversion fails, issues an error message echoing the name followed by a "?".
This word is normally executed through the vector interpret.

__
(loop) (--)

This is the run-time procedure for LOOP. At compile time, LOOP compiles the cfa of (loop)
into the definition being compiled.

__
(loop+) (--)

This is the run-time procedure for +LOOP. At compile time, +LOOP compiles the cfa of
(loop+) into the definition being created.

__
(lseek) (fcb mode offset -- ioResult)

Calls the File Manager routine SetFPos to position the file pointer of the file specified by
fcb as specified by mode and offset. If successful, ioResult is zero; otherwise, it is non-
zero. (lseek) is the primitive used by the moveTo: method of class File.

__
(make) (fcb -- ioResult)

Calls the File Manager routine Create to create the file specified by fcb. If successful,
ioResult is zero; otherwise, it is non-zero. (make) is the primitive used by the New: method
of class File.

__
(number) (d addr -- d char-addr)

Converts the character string at addr+1 to a double precision number, accumulating the
result into d; the byte at addr contains the string's length but is ignored. Conversion
proceeds until a non-digit is encountered. char-addr is the address of the first non-
convertible character encountered. (number) is the primitive used by number.

__
(open) (fcb mode -- ioResult)

Calls the File Manager routine to open the file specified by fcb using the access mode
mode. If successful, ioResult is zero; otherwise, it is non-zero. (open) is the primitive used
by the Open: method of class File.

__
(post) (eventCode eventMsg --)

Yerk Glossary 18

Post the corresponding events to the event queue.

See also: (flush)
__

Yerk Glossary 19

(read) (fcb count bufaddr -- ioResult)

Calls the File Manager routine Read to read count bytes into bufaddr from the file
specified by fcb. If successful, ioResult is zero; otherwise, it is non-zero. (read) is the
primitive used by the Read: method of class File.

__
(save) (--)

A primitive used by save in the process of saving the Yerk dictionary.
__
(type) (addr len --)

Calls the QuickDraw routine to DrawText to print the string whose address and length are
on the stack. (type) is the primitive used by type to print a string on the screen.

__
(write) (fcb count bufaddr -- ioResult)

Calls the File Manager routine Write to write count bytes into bufaddr from the file
specified by fcb. If successful, ioResult is zero; otherwise, it is non-zero. (write) is the
primitive used by the Write: method of class File.

__
(^elem) Parameter Stack: (n -- addr)

Method Stack: (-- addr:e(n))

Returns the address of the n-th element of an indexed object. (^elem) is the primitive used
by ^elem, which also does range-checking.

__
* "star" (n1 n2 -- n1*n2)

Multiplies the two signed numbers leaving their signed product.

See also: m* u* 2* f* <<
__
*/ "star-slash" (n1 n2 n3 -- (n1*n2)/n3)

Multiplies the two signed numbers, then divides the double number product by the signed
number n3, leaving a signed quotient. Division by zero and overflow are not checked for.

 Example: 1220 34 100*/ \ Compute 34% of 1220
. 414 0->

__

Yerk Glossary 20

*/mod (n1 n2 n3 -- rem (n1*n2)/n3)

Same as */ except that the second cell contains the remainder of the division.
__
+ (n1 n2 -- n1+n2)

Yerk Glossary 21

Adds two signed numbers, leaving their signed sum.

See also: 1+ 2+ 4+ 8+ f+
__
+! "plus-store" (n addr --)

Adds n to the memory location at addr. In other words you can use +! to increment
memory location by n.

__
++1 (incVal idx --)

A primitive used in its class object for incrementing a bArray value. It adds incVal to the
cell of the array specified by idx.

__
++2 (incVal idx --)

A primitive used in its class object for incrementing a wArray value. It adds incVal to the
cell of the array specified by idx.

__
++4 (incVal idx --)

A primitive used in its class object for incrementing an Array value. It adds incVal to the
cell of the array specified by idx.

__
++> "increment" (n --) : op

This prefix operator adds the number on the stack to the operand following it. The operand
may be a value, named input parameter, or local variable.

 Example: 30 value xx \ Define and initialize value xx.
17 ++> xx \ Add 17 to xx.
xx . 47 0-> \ Print current contents of xx.

\ The following (dummy) word shows ++> operating on a named
\ input parameter and a local variable.
: aWord { x \ counter -- result }
BEGIN

x 0> WHILE
-3 ++> x \ Add -3 to x, named input parm.
... \ more code
1 ++> counter \Increment counter, local variable

REPEAT ;

Yerk Glossary 22

This is an immediate word.
See also: ->

 __
+- (n1 n2 -- n1)

Yerk Glossary 23

Sets the sign of n1 to that of n2.

 Example: -340 20 +- . \ Change sign of -340 to sign of 20
 340 0->

__
+base (rel-addr -- base-addr)

Adds the contents of the 68000's register A3, Yerk's base pointer, to the address on the stack
converting it to an absolute address. All addresses within Yerk are relative to register A3.
You can use +base to prepare addresses for Toolbox calls

__
+curs (--)

Turns on display of the cursor on the screen.
__
+echo (--)

Turns on echoing to the screen of source files being loaded from disk. You may want to use
+echo when loading a newly created source file to help spot any code snagging compilation.
Echo is toggled by the keyboard short cut: Command-O

See also: -echo decho
__
+loop Compile: (yerk --)

Run: (i --)

Used to end a DO-LOOP structure. At run time, the top of the stack contains the increment
to be added to the loop index. If the increment is positive, a branch back to the loop body is
executed if Index is greater than or equal to the limit. If the increment number is negative, a
branch back to the loop body is executed if the Index is greater than the limit. No
parameters are left at exit. +loop is an immediate, compile-time-only word. Use +loop
instead of loop when you need a loop increment other than 1 or -1.

 Example: 10 0 \ 10 = limit; 0 = loop index
DO aWord \ some code
anotherWord \ ..
2 +LOOP \ increment loop index by 2

This is an immediate word.
__
+print (--)

Yerk Glossary 24

Enables printer output and turns on echoing to the printer. (Echoing to printer means
printing on the printer whatever text appears on the screen.) +print vectors system vector
pemitvec to permit, pcrvec to pcr, ptypevec to ptype, and echovec to echo. (Echo executes
pemitvec and emitvec.) Accordingly, after you execute +print, any text emitted or typed on
the screen is also printed on the printer. Also, you can send

Yerk Glossary 25

characters directly to the printer with pemitvec and ptypevec from within your program. Print
echo is toggled by the keyboard short cut: Command-P.

__
+range (--)

Enables runtime range checking of indexed objects.
__
, "comma" (n --)

Compiles n into the next available dictionary location and advances the dictionary pointer.

See also: c, w, s, 0, f,
__
,exec (cfa --)

State-smart execute. If used within a program definition, compiles the cfa as a literal to be
executed at runtime; otherwise executes it immediately. This is not an immediate word. It
is useful in building compiler words which conditionally compile other words.

See also: execute
__
- (n1 n2 -- n1-n2)

Subtracts two numbers, leaving their signed difference.

See also: 1- 2- 4- f-
__
-1 (-- -1)

Puts a -1 onto the stack. -1 is provided to save space and compilation time.
__
-> "into" (n --) : op

This prefix operator stores the number on the stack into the operand following it. The
operand may be a value, vect, sysvect, named input parameter, or local variable.

 Example: 0 value curRoom \ Define value curRoom.
room -> curRoom \ put current room in

\ dictionary into curRoom.
0 vect provec \ Define vect provec .
'c doGraph -> provec \ Put cfa of doGraph into provec.
provec \ doGraph is executed.

Yerk Glossary 26

This is an immediate word.
See also: ++>

__

Yerk Glossary 27

-base (abs-addr -- rel-addr)

Subtracts the contents of the 68000's register A3, Yerk's base pointer, from the absolute
address on the stack converting it to its relative address. All addresses within within Yerk
are relative to register A3. You can use -base to convert an absolute address returned by a
Toolbox call into a Yerk-compatible relative address.

__
-curs (--)

Turns off display of the cursor on the screen.
__
-dup If zero: (n1 -- n1)

If non-zero: (n1 -- n1 n1)

Duplicates the number on the stack if it is non-zero.
__
-echo (--)

Turns off echoing to screen of source files being loaded from disk. Echo is toggled by the
keyboard short cut: Command-O.

See also: +echo decho
__
-print (--)

Turns off the printer output and echoing to the printer. You can use +print to turn it all on
again. Print echo is toggled by the keyboard short cut: Command-P

__
-range (--)

Disables runtime range checking. Can be used to speed up already debugged code. This
word is the inverse of +range.

__
-trailing (addr len -- addr len')

Suppresses trailing blanks before outputting a string with type. It examines the character
string addr and reduces the character count so that trailing blanks are not output by a
subsequent type.

See also: padBL
__

Yerk Glossary 28

. "dot" (n --)

Prints n using the current number base as the conversion radix.

 Example: 12 14 + . <return> \ Print number on top of stack.
26 0->

Yerk Glossary 29

See also: d. u. e. e.r<#
__
." "dot-quote" (--) : textString

Prints the textString. If used within a program definition, compiles the address of its run-
tine primitive, (."), the length of the string, and the string itself into the dictionary to be
printed at run time; otherwise prints it immediately.

 Example: \ ."used at run time:
."Bit-mining, the mother of the Information Age." <return>
Bit-mining, the mother of the Information Age. 0->

\ ."used at compilation time:
: aWord"`I am a string." ... ;
\ The string will be printed when aWord is executed.

This is an immediate word.
See also: type

__
..end "dot-dot-end" (--)

An analog of ;S used at the end of a codeField handler in an mCFA word. See Part II.4.

This is an immediate word.
See also: do.. prefix codefields build

__
.classes (--)

Prints the name, data length and element width for each class defined in the current
dictionary. Classes which are not indexed will show a width of zero.

See also: @dlen @width
__
.classname (^obj --)

Prints the name of this object's class. Primarily used by Yerk internals.
__
.d (n --)

Prints n in decimal, regardless of the current number base.

See also: decimal

Yerk Glossary 30

__
.h (n --)

Prints n in hexadecimal, regardless of the current number base.

Yerk Glossary 31

See also: hex
__
.mods (--)

Lists the names of existing modules and their load status. If the module is loaded into the
heap it's load address will be printed; if not, a zero. Locked modules are indicated.

__
.name (nfa --)

Prints the name of the word whose name field address is specified, substituting three
question marks if the name length is >16. This word can be used in place of id. when it is
not 100% certain whether or not you are pointing to the header of a real word.

See also: id.
__
.r (n w --)

Prints n using the current number base, right-justified in a field w characters wide. The
entire number is printed even if it exceeds field width.

 Example: 17 5 .r <return>
bbb17 0->\ The b's represent blanks.

__
.room (--)

Prints the status of memory usage. Shows the total memory usage of the dictionary, usage
by non-purgeable blocks and largest purgeable block in the heap.

__
.s (--)

Prints the contents of the three stacks in decimal and hexadecimal.

 Example: Parameter Stack: (--Empty Stack--)
Return Stack:
16286 $ 3F9E
16744 $ 4168
Methods Stack: (--Empty Stack--)

__
.val (n w --)

Prints n using the current number base, right-justified in a field w characters wide, and plus

Yerk Glossary 32

two spaces. The entire number is printed even if it exceeds field width. .val is the same
as .r, except that two spaces are printed after the string.

 Example: 175 .val <return>
bbb17bb 0->

__

Yerk Glossary 33

.w (--) : word

Finds the next word in the input stream and dumps the 100 bytes in the dictionary after the
words entry.

 Example:
.w dup <return>
 Dump from address: 23F6
 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF

23DO 23 F0 68 00 4E F3 78 00 83 44 55 50 00 00 23 CE ..h.N.x..DUP..#.
__
/ "slash" (n1 n2 -- n1/n2)

Divides two signed numbers leaving their signed quotient.

See also: m/ u/ 2/ f/ >> mod/mod
__
// "load" (--) : filename

Loads and compiles source code from a text file on disk. The text is echoed to the screen if
echoing to the screen has been enabled to +echo. Pauses if space bar is pressed; resumes if
space bar is pressed again. Restores keyboard input on any error or end-of-file. The source
file being loaded may itself initiate loading a file as in "// myFile". Source file loads may be
nested up to six levels deep. The File objects (fcb's) associated with each file being loaded
are in the indexed object loadFile. The names of the files in loadFile are printed when abort
is executed.

 Example: // dungeons \ Loads source file "dungeons".

\ The following is an Example: of a "load" file that automatically loads several
\ source files; compiles a module, and saves the dictionary when it is loaded.

1 // Mod
2 // Imports
3 Module Tool
4 // Event
5 // QD
7 // Window
8 // forget.load
9 Save yerk.com
10 Become yerk

See also: sony external profile +echo<"
__

Yerk Glossary 34

/mod "slash-mod" (n1 n2 -- rem n1/n2)

Divides two signed numbers leaving the remainder and signed quotient.

 Example: 34 11 /mod . . <return>
3 1 0-> \ 11 goes into 34 3 times with a remainder of 1.

Yerk Glossary 35

__
0 "zero" (-- 0)

Puts a zero on the stack. It is provided to save space and compilation time.
__
0! (addr --)

Stores a 0 at the memory location specified by addr.
__
0, (--)

Compiles at a 0, an empty cell, into the dictionary.
__
0.0 (-- fptr)

Puts the value "zero" into the floating heap and returns it's pointer. It is provided to save
space and compilation time.

__
0= (n -- bool)

Examines the signed number n and leaves a true flag if n is equal to zero; otherwise, leaves
a false flag. 0= is identical to NOT.

 Example: -9 0= . <return> \ Is -9 equal to zero;
0 0-> \ zero = false.

See also: f0=
__
0< (n -- bool)

Examines the signed number n and leaves a true flag if n is less than zero; otherwise, leaves
a false flag.

 Example: 57 > . <return> \ Is 57 greater than zero;
1 0-> \ non-zero = true.

See also: f0>
__
0branch (bool --)

Compiled into definitions by the Yerk words ELSE, AGAIN, LOOP, +LOOP and REPEAT.
Changes the value of IP to cause the branch to occur when bool is false (zero). For a more

Yerk Glossary 36

complete explanation of the Forth elements of Yerk, see The Forth Encyclopedia, cited in the
bibliography at the end of the manual.

__
1 (-- 1)

Yerk Glossary 37

Puts a 1 on the stack. It is provided to save space and compilation time.
__
1+ (n -- n+1)

Adds one to the number on the stack.
__
1- (n -- n-1)

Subtracts one from the number on the stack.
__
1.0 (-- fptr)

Puts the value "one" into the floating heap and returns it's pointer. It is provided to save
space and compilation time.

__
1/x (fptr -- fptr)

Computes the reciprocal of the floating point number pointed to by fptr.
__
2 (-- 2)

Puts a 2 on the stack. It is provided to save space and compilation time.
__
2! (d addr --)

Stores a double number into the two long memory words specified by addr; that is, this is a
64-bit store.

__
2* (n -- n*2)

Multiplies n by 2. This is a fast signed integer multiply by 2, implemented as an arithmetic
32-bit left shift.

See also: <<
__
2** (exp -- 2^exp)

Raises 2 to the exp power.
__
2+ (n -- n+2)

Yerk Glossary 38

Increments n by 2.
__
2- (n -- n-2)

Decrements n by 2.

Yerk Glossary 39

__
2/ (n-- n/2)

Divides n by 2. This is a fast signed integer divide by two, implemented as an arithmetic
32-bit right shift.

See also: >>
__
2@ "two-fetch" (addr -- d)

Fetches the 64-bit value at addr and puts it on the stack as a double number.
__
2drop (d --)

(n1 n2 --)

Drops a double number or two 32-bits numbers on the stack.
__
2dup (d -- d d)

(n1 n2 -- n1 n2 n1 n2)

Duplicates the double number or two 32-bits numbers on the stack.
__
2over (d1 d2 -- d1 d2 d1)

Duplicates the double number below the double number on the stack.
__
2swap (d1 d2 -- d2 d1)

Exchanges the top two double numbers.
__
3+ (n -- n+3)

Increments n by 3.
__
4 (-- 4)

Puts a four on the stack. It is provided to save space and compilation time.
__
4* (n -- 4*n)

Yerk Glossary 40

Multiplies n by 4. This is a fast signed integer multiply by 4, implemented as two 32-bit
arithmetic left shifts.

See also: <<
__
4+ (n -- n+4)

Yerk Glossary 41

Increments n by 4.
__
4- (n -- n-4)

Decrements n by 4.
__
8+ (n -- n+8)

Increments n by 8.
__
: "colon" Compile: (--) : name

Run: (--)

Creates a dictionary entry for the next word in the input stream, sets compile mode, and
stores the current value of the parameter stack pointer in CSP for subsequent error-checking.
Once in compile mode, Yerk compiles the cfa's of subsequent words from the input stream
which are not immediate words into the dictionary entry of the word just created.
Immediate words are executed as encountered. If a word cannot be found, Yerk's interpreter
attempts to convert it into a literal using the current number base and then to compile it. If
conversion to literal fails, prints message: "not found" and aborts.

 Example: : aWord word1 word2 word3 ... ;

This is an immediate word.
See also: create state exit immediate

__
:CLASS (--) : name

Begins compilation of a class. The next word in the input stream is the name of the class to
be compiled. You end class compilation with ;class.

 Example: :CLASS Two PanelWind
 ...

;CLASS

This is an immediate word.
See also: <Super <Indexed cstate

__
:f (--) : name

Begins compilation of a word which was previously forward-referenced. :f creates a
headerless entry for the word and then patches the previous entry to point to the newly

Yerk Glossary 42

compiled definition. Forward-referencing is useful when a word is to be used before it can
be defined. You end the compilation with ;f.

 Example: forward setControl \ forward reference setControl
 ... \ more code

Yerk Glossary 43

:f setControl ;f \ compile setControl

See also: forward

__
:M (--) : name

Begins compilation of a method within a class definition. The next word in the input stream
is a selector (always ending in ':'). You end method compilation with ;m.

 Example: :CLASS TwoPanelWind <Super window
... \ more code

:M SETPANES: \ Compile definition of method
... \ code for method

;M
... \ more methods

This is an immediate word.
__
:module (--) : name

Begins compilation of a relocatable module. Instantiation of a class defined in a module can
occur only within that module. A reference in a module or in the dictionary to an object
defined in another module must be late-bound (enclosed within brackets). Don't use ' inside
a word or method definition in a module, because the address returns may not be valid when
the module is later relocated. You end compilation of a module with ;module. The name
following :Module must be predefined in the resident dictionary using FROM.

 Example: :module myUtils \ Begin compilation of myUtils
...
: utilWord1 ... ;
...
size: [anIdxObj] \ anIdxObj is defined in another module, so

\ message to it is late-bound.
...

;module

See also: from
__
:PROC (--) : name

Begins compilation of a word that to the Toolbox behaves like a Pascal procedure or
function. You can use a :proc word when a Toolbox routine requires a procedural argument.

Yerk Glossary 44

 Example: \ This proc word is from file ctlWind
\ Procedure to be executed when a control is being tracked.
(ctlHndl int:part --)
:PROC ctlProc word0 swap ctlExec ;PROC

__

Yerk Glossary 45

; "semicolon" (--)

Terminates a colon definition and compiles its own runtime procedure ;s. Prints message:
"definition not finished" and aborts if the parameter stack pointer is different from when
compilation was started.

This is an immediate word.
__
;f (--)

Ends compilation of a previously forward-referenced word.

This is an immediate word.
__
;M (--)

Ends compilation of a method within a class definition. ;m compiles (;m), its own run-time
procedure. At run time, (;m) removes the data left on the methods stack by the object that
received the message.

This is an immediate word.
__
;module (--)

Ends compilation of a module.
__
;PROC (--)

Ends compilation of a proc word, which appears as a Pascal procedure or function to the
Toolbox.

This is an immediate word.
__
;S Parameter Stack: (--)

Return Stack: (addr --)

This is the primitive that ; compiles at the end of a colon definition. ;s transfers execution to
the next higher level by popping the return address of the calling word or method off the
return stack.

__
< (n1 n2 -- bool)

Yerk Glossary 46

Compares two signed numbers. If n1 is less than n2, leaves a true flag; otherwise, leaves a
false flag.

See also: d< 0< u< f<
__

Yerk Glossary 47

<" (--) : filename

This is the primitive loader. Use this when rebuilding Yerk from below "Files" which
contains the definition for //.

__
<# (d --)

Prepares for conversion of a double number into a text string for printing. <# is paired with
#>.

See also: # #s hold sign
__
<< "shift-left" (n exp -- n*(2^exp))

Multiplies n by 2 raised to the signed exp power. << is implemented as exponential
arithmetic left-shifts on n.

 Example: 3 2 << . <return> \Multiplies 3 by 2^2, i.e., left shift 3 (0011) by 2 bits
 12 0-> \Result is 12 (1100).

__
<= (n1 n2 -- bool)

Compares two signed numbers. If n1 is less than or equal to n2, leaves a true flag;
otherwise, leaves a false flag.

__
<> (n1 n2 -- bool)

Compares two signed numbers. If n1 is not equal to n2, leaves a true flag; otherwise, leaves
a false flag.

See also: f<>
__
<indexed (width --)

Sets the width of the bytes of the elements of an indexed class.

 Example: \ Array objects will have indexed elements of four bytes.
:CLASS Array <Super Object 4<indexed

...
;CLASS

__
<super (--) : class

Yerk Glossary 48

Stets the superclass of the object being defined to the name following <super. Objects of the
class being defined will inherit all the instance variables and methods of the superclass,
except for the methods of the superclass which may be redefined in the current class.

Yerk Glossary 49

 Example: \ Oval objects inherit all the ivars and methods of Rect.
:CLASS Oval <super Rect

...

This is an immediate word.
__
<var ([#elems] ^class --)

Compiles an instance variable dictionary entry. A primitive used in class compilation.
Requires the #elems field only if the class pointed to is indexed.

__
<[(--)

Ends compile state to resume run state. Sets state = 0. Used in conjunction with]>.

 Example: : aWord ...
<[3]> 'cfas doGraph doPict doText ... ;
\ <[is used to put the interpreter in run state temporarily because
\ 'cfas needs the count of cfa's to compile on the stack;]> resumes
\ compilation.

This is an immediate word.
__
= (n1 n2 -- bool)

Compares two signed numbers. If n1 is equal to n2, leaves a true flag; otherwise, leaves a
false flag.

See also: d= 0= s= f= <>
__
> (n1 n2 -- bool)

Compares two signed numbers. If n1 is greater than n2, leaves a true flag; otherwise, leaves
a false flag.

See also: d> 0> s> f>
__
>= (n1 n2 -- bool)

Compares two signed numbers. If n1 is greater than or equal to n2, leaves a true flag;
otherwise, leaves a false flag.

__
>> "shift-right" (n exp -- n/(2^exp))

Yerk Glossary 50

Divides n by 2 raised to the exp power. >> is implemented as exponential arithmetic right-
shifts on n.

 Example: 12 2 >>. <return> \ Divide 12 by 2^2, i.e., right-shifts 12 (1100) by
\ 2 bits.

Yerk Glossary 51

3 0-> \ Result is 3 (0011).
__
>body (cfa -- pfa)

Derives the parameter field address, pfa, from the code field address, cfa, of the word.

See also: body>pfa
__
>float (n -- fptr)

Takes a 32-bit number off the stack and converts it to a floating point number on the float
heap, and returns a pointer to the floating point number on the stack.

__
>link (cfa -- lfa)

Derives the link address, lfa, from the code field address, cfa, of the word.

See also: lfa
__
>name (cfa -- nfa)

Derives the name field address, nfa, from the code field address, cfa, of the word.

See also: nfa

__
>origin (x y --)

Calls the QuickDraw routine SetOrigin to set the origin of the current grafPort.
__
>ptr (handler -- ptr)

Dereferences a Toolbox handle returning a relative pointer. A handler is a pointer to a
pointer. By convention, in Yerk a handler's address is absolute and a pointer's address is
relative to A3. You can use >ptr when a Toolbox call returns a handle from which you need
to derive an address that Yerk can work with.

__
>r "to-r" (n --)

Removes (pops) the number on the parameter stack and places (pushes) it onto the
Parameter stack. Use of >r must be balanced with >r in the same definition. You should use
the return stack with great care. In general, use named input parameters and local variables

Yerk Glossary 52

instead; they are easier to use and a lot friendlier.
__
>str255 (addr1 len addr2 -- abs:addr2)

Yerk Glossary 53

Converts an addr-len format string into a str255-format string, putting the string at addr2, a
buffer, and leaves the absolute address of the string.

__
>uc (abs:addr len --)

Converts a string into a somewhat mixed format to uppercase. Does the actual conversion in
place. See use in class string for an example of how to use this primitive word in a higher-
level word.

__
? (addr --)

Prints the number at addr as a text string using the current using base by fetching the
contents of addr and executing . ("dot").

__
?class (--)

Checks to see if the interpreter is in class compilation mode, that is if cstate is set to true. If
cstate is set to false issues error message #115 and executes an abort.

__
?comp (--)

Prints message: "compilation only" if not compiling, that is, if state is not zero.
__
?csp (--)

Prints message: "definition not finished" if the contents of the parameter stack pointer differs
from that stored in value csp when : began compilation.

__
?dp (--)

Checks for condition that the dictionary has grown into the heap. If it has, aborts with the
message: out of room". Primarily used by Yerk internals.

__
?decimal (--)

Prints message: "must be decimal" if the current base is not decimal.
__
?error (bool --) : resID

Prints the string with resource ID of resID if the boolean on the stack is true. The string
must be in a currently open resource file or in Yerk.rsrc.

Yerk Glossary 54

 Example: notPrime ?error 532 \ Prints string with ID 532
\ if notPrime is true.

This is an immediate word.
__

Yerk Glossary 55

?event (eventMask -- bool)

Calls the Toolbox Event Manager routine EventAvail to test for the event(s) specified by
eventMask. If an event is available, leaves a true flag; otherwise, leaves a false flag.

 Example: mouseDnMask ?event \ Test if a mouse-down event is
\ available in the event queue.

See also: @event-msg get-event
__
?exec (--)

Issues an error message if not in interpret state.
__
?idx (--)

This vector executes the word responsible for range-checking in indexed object methods. If
range-checking has been turned on with +range, ?idx is vectored to ?ixRange; if range-
checking has been turned off with -range, the vect ?idx is vectored to null, Yerk's "do-
nothing" word. You can turn off range-checking within the methods of indexed objects if
you need the extra speed this provides.

__
?IsClass (pfa -- pfa bool)

Returns the pfa and a true flag if the pfa belongs to a class, that is, the pfa is the pointer to a
class (^class); otherwise, returns the pfa and a false flag.

 Example: ' Window ?IsClass . <return>
1 0-> \ Returns 1 as true flag

__
?IsObj (pfa -- pfa bool)

Returns the pfa and a true flag if the pfa belongs to an object, that is, the pfa is the pointer to
an object (^obj, or equivalently, ^base); otherwise, returns the pfa and a false flag.

 Example: ' fWind ?IsObj . <return>
1 0-> \ Returns 1 as a true flag.

__
?IsVect (pfa -- pfa bool)

Returns the pfa and a true flag if the pfa belongs to an object vector (a value or vect);
otherwise, returns the pfa and a false flag.

Yerk Glossary 56

 Example: ' windVec ?IsVect . <return>
1 0-> \ Returns 1 as a true flag.

__

Yerk Glossary 57

?IxObj Parameter Stack: (--)
Method Stack: (^base --^base)

Prints message: "not indexed" if an object is not indexed. ^base, the pointer to the object's
data, is on the methods stack.

__
?IxRange Parameter Stack: (index -- index)

Method Stack: (^base --^base)

Prints message: "not indexed" if an object is not indexed. ^base, the pointer to the object's
data, is on the methods stack. ?IxRange prints message "index out of bounds" if the index
on the parameter stack is not in the range (0 <= index < limit: idxObj).

See also: ?idx
__
?key Successful: (-- keysword modsword T)

Unsuccessful: (-- F)

Executes the Next: method of object fEvent to see if a key event is pending in the event
queue. If a key event is available, ?key returns keysword, modsword and a true flag. If no
key is available, ?key returns a false flag only. See Part III.4, Events.

See also: key-evt key
__
?lead (-- #pixels)

Returns the pixel increment used by the system when skipping to the start of a new text line.
The calculation is 120% of the point size of the current font. It is possible to change this
factor:

 Example: 130 ' ?lead 24 + ! \ Set spacing factor to 130%

This figure should always be greater than 100% to provide for lower case descenders and
spacing between lines. Primarily used by CR.

See also: tSize
__
?lines (-- #lines)

Returns the number of character lines which will fit into the font window at the current font
size. The result is based, in part, on ?lead.

See also: tSize ?lead

Yerk Glossary 58

__
?mlock (cfa -- bool)

Returns true if the module is locked.

Yerk Glossary 59

 Example: 'c grepmod ?mlock

See also: mlock munlock
__
?new (handle --)

This word checks to see if the handle has been initialized, that is to say whether or not it is
non-zero. If the handle equals zero, it issues error message # 153 and executes an abort.

__
?num (addr -- d t or f)

Converts a character string at addr+1 to a double precision number; the byte at addr
contains the string's length but is ignored. Conversion proceeds until a blank is encountered
- the string of digits must end with a blank - any character which is not a digit, decimal point
or minus sign will fail to convert. The position of the last decimal point encountered (if any)
is left in DPL. If conversion fails, a false is left on the stack. This is the primitive used by
number.

See also: digit dpl (number) @val number
__
?pairs (n1 n2 --)

Prints message: "unpaired conditionals" if n1 does not equal n2. Message indicates that
compiled conditionals do not match, such as an IF without a THEN.

__
?pause (--)

Checks whether the user wants to stop or pause or stop. Prints the message: "Paused -
<Space Bar> to continue>>>". If the next key pressed is NOT a space bar of CR, executes
an abort.

__
?range Parameter Stack: (index -- index)

Method Stack: (^base --^base)

Prints class error message "index out of bounds" if the index is not in the range (0 <= index
< limit: idxObj). ^base, pointer to the object's data, is on the methods stack.

__
?rdepth (--)

Prints message: "Return Stack Overflow" and executes an abort if the return stack is too
close to its maximum depth.

Yerk Glossary 60

 Example: : test ... ?rdepth ... ;
\ Test determines if the return stack is nested too deeply as the result
\ of a recursive routine, for example.

__

Yerk Glossary 61

?stack (--)

Prints message: "empty stack" and executes an abort if underflow has occurred on the
parameter stack. Underflow may occur if a word or method expects more parameters than
are provided.

__
?terminal (--)

Preforms a 40 ?Event. This word is used in class Timer, class Mouse, and in the utility
word ?pause to test for a keyboard event.

See also: ?event ?pause
__
@ "fetch" (addr -- n)

Fetches the number at addr and puts it on the stack.

 Example: 39 variable temp \ Define variable temp
temp @ . <return> \ Fetch and print the contents of temp.
39 0->

See also: c@ w@ 2@ m@ mw@ ? !
__
@dlen (pfa -- len)

Returns the length of the object's private data.

See also: @width
__
@event-msg (-- msg)

Fetches the message of the latest event from the event record in object. fEvent, the Event
object in the nucleus.

See also: ?event get-event
__
@pfa (-- pfa) : word

Executes find on the next word in the input stream. If successful, leaves the pfa of the word;
otherwise, prints message: "not found" and aborts.

 Example: (-- ^class) \Fetches the pfa (^class) of a class

Yerk Glossary 62

: getClassPtr @pfa ?IsClass not
abort" Arguments not in class.";

__
@val (-- val) : val

Yerk Glossary 63

Takes the next word in the input stream, converts it to a number and leaves the value on the
stack. An example of a word which uses @val is $.

See also: number
__
@width (^class -- width)

Returns the width of the elements of indexed class.

 Example: ' Array @width

See also: @dlen
__
@word (-- addr) : word

Takes the next word in the input stream, stores it as a text string converted to upper-case at
here, and leaves its address.

 Example: (--)
: test@word

" The word was "
@word \ Count leaves addr len for type.
type ;

 test@word insanely <return>
The word was INSANELY 0->

See also: word" @val
__
@xy (-- x y)

Leaves the current position of the cursor in global coordinates.

See also: gotoxy
__
abort (--)

Clears the parameter and methods stacks, stops interpreting the current input line, enters run
state, and sets the number base to decimal. Then, executes the word in abortvec. Returns
control to the keyboard (unless abortvec prevents this) printing the current prompt, usually
"0->".

See also: quit
__

Yerk Glossary 64

abort" (bool --) : textString"

Prints the text string and executes an abort, if the boolean is true. Useful in debugging and
error reporting. At least one space must follow the first quote. Can be used in colon
definition only.

Yerk Glossary 65

 Example: : printReport ...
printFlag not abort" Printer not on"
 ... ; \ printFlag is true if the printer is on.

This is an immediate word.
__
abortvec (--)

This is the system execution for abort. If abort is executed and abortvec is vectored to
CLEAN2, the contents of the file stack, loadFile, are printed and control is returned to the
keyboard, providing access to the Yerk interpreter. If abort is executed and abort is vectored
to a user-defined error handler, it is executed. AbortVec may be used with QuitVec to seal
off the user of an application from the interpreter.

__
abs (n -- un)

Leaves the absolute value of n.

See also: dabs fabs
__
actfw (--)

This is the enact action word for fWind. Its definition is:

: actFW decimal initFont ;
__
actv-evt (-- 0)

Handles activate/deactivate events for object fEvent. It sends its Window object a message
to execute its enable: method: if the window is being deactivated, sends its Window object a
message to execute its disable: method. This word can be redefined through the use of :f or
by substitution of vector 8 in fEvent.

See also: disk-evt key-evt mouse-evt null-evt upd-evt app4-evt
__
addm Parameter Stack: (i --)

Method Stack: (n -- n+i)

Adds the number on the parameter stack to the number on the methods stack.

See also: copym exgm dropm dupm popm pushm
__

Yerk Glossary 66

addTask (cfa --)

Adds the cfa to taskList. TaskList contains the cfas of up to four words that object fEvent
executes as background tasks whenever it receives a null event. (You must load optional file
"Tasks" to use this facility.)

Yerk Glossary 67

 Example: 'c dispClock addtask
\ Adds displaying clock as one of the background tasks.

See also: killtask dotasks tasklist
__
again Compile: (yerk --)

Run: (--)

At run time, transfers execution to the corresponding BEGIN. This is an unconditional loop.
You can exit only by doing r> drop one level below, or by transfer of control to another
portion of the application because of a become.

 Example: (--) \ Listen to events, dropping the key events.
: listen
BEGIN key \ key actually listens to all events

\ returning only after key-down events.
drop
AGAIN ;

This is an immediate word.
__
align (addr -- even-addr)

Increments addr by one if it is odd, leaving the next address. You can use align to make
sure the 68000 will not try to access memory beginning at an odd address, which can cause a
fatal error #2.

__
allot (n --)

Adds n to the dictionary pointer dp. You can use allot to reserve n bytes of dictionary space.

 Example: 0 variable printBuff \Creates header for a 256-byte
\ buffer and first 4 bytes.

252 allot \ Allots next 252 bytes.

printBuff <return>
1-> \ Leaves address of buffer.

See also: reserve bytes
__
and (n1 n2 -- n3)

Yerk Glossary 68

Leaves the bitwise AND of n1 and n2 as n3. And works as a logical and if you want to use
n1, n2, n3 as booleans (non-zero=true; zero=false).

 Example: 10 6 and . <return> \ 1010 AND 0110
2 0-> \ = 0010

Yerk Glossary 69

10 6 and . <return> \ true AND true
2 0-> \ non-zero=true

See also: or xor Land
__
annuity (fptr:r fptr:n -- fptr)

Computes annuity(r,n)=[1-(1+r)-n]/r, where r is the interest rate and n is the number of
periods. Annuity is more accurate than the straightforward computation of the expression
above using basic arithmetic operations and exponentiation. The annuity function is directly
applicable to the computation of present and future values of ordinary annuities.

See also: compound
__
app4-evt (-- 0)

This word is called whenever a multifinder type event occurs (suspend or resume). The two
vectors that will be executed upon a suspend or resume event are 'suspend' and 'resume'. You
may set these vectors in your own application. They default to null. There is also a
'mouseMoved' vector that will execute if the mouse was detected to have moved. The
clipboard may be converted with the cvtClip vector. See Inside Multifinder. This word can
be redefined through the use of :f or by substitution of vector 16 in fEvent.

See also: actv-evt key-evt mouse-evt null-evt upd-evt
__
applemen (-- addr)

Leaves the address of the object that represents the menu under the apple in the upper left
corner of the menu bar. Where the desk accessories are stored.

__
arctan (ftpr -- ftpr)

Computes tan-1(x) of the floating point number pointed to by ftpr.
__
ascii Compile: (--) : chr

Run (-- c)

If used within the program definition, compiles the ASCII value of the next character in the
input stream as a literal to be placed on the stack at run time; otherwise puts the ASCII value
onto the stack immediately.

 Example: ascii X . <return>

Yerk Glossary 70

88 0-> \ ASCII value of upper-case x.

This is an immediate word.
__

Yerk Glossary 71

asmCall (addr len --)

Assembles the trap call to the toolbox routine named by the string.

 Example: \ This code word is from the file "date"
(secs dateRec --)
Creates secs2date \ Converts seconds to date.

popA0 \ pop register A0
popD0 \ pop register D0
" Secs2Date" asmCall

next, \ End compilation.

See also: call
__
at1 Parameter Stack: (i -- e(i))

Method Stack: (^base -- ^base)

Fetches the i-th one byte element of an indexed object whose ^base, pointer to the objects
data, is on the methods stack. Uses "at1", the optimized fetch for indexed objects with one-
byte elements.

 Example: \ This method is from bArray.
(i --e(i))
:M AT: ?idx at1 ;M

__
at2 Parameter Stack: (i -- e(i))

Method Stack: (^base -- ^base)

Fetches the i-th 2-byte element of an indexed object whose ^base, pointer to the objects
data, is on the methods stack. Uses "at2", the optimized fetch for indexed objects with 2-
byte elements.

 Example: \ This method is from wArray.
(i --e(i))
:M AT: ?idx at2 ;M

__
at4 Parameter Stack: (i -- e(i))

Method Stack: (^base -- ^base)

Fetches the i-th one byte element of an indexed object whose ^base, pointer to the objects
data, is on the methods stack. Uses "at4", the optimized fetch for indexed objects with 4-
byte elements.

Yerk Glossary 72

 Example: \ This method is from Array.
(i --e(i))
:M AT: ?idx at4 ;M

__
atof Successful: (addr len -- fval T)

Yerk Glossary 73

Unsuccessful: (addr len -- F)

Converts a string into a floating point number.
__
base (-- base)

This value contains the current number base used for the input and output conversions. Note
that the middle characters of the Yerk prompt changes to a '?' for all bases other than 10 and
16. For 10 the character is '-'; for 16 the character is '$'.

 Example: 2 -> base \ Make the number base 2.
1011 110 + . \ Add 11 and 6.
10001 0?> \ = 17

__
become (--) : word

Executes the word following it as the highest level word in the application. Before
executing the word, become clears all three stacks. Become gives you a clean slate when
you jump from one part of the application to another, via a menu choice. For Example:

 Example: : optMen.disp become display ;
\ optMen.disp is the handler word for selection display in the
\ Options menu. It transfers control to the high-level word display.

This is an immediate word.
__
beep (dur --)

Beeps the Macintosh's speaker for dur ticks (60ths of a second).
__
begin Compile: (-- yerk)

Run: (--)

Used in colon definition in the form:

BEGIN ... UNTIL
BEGIN ... AGAIN
BEGIN ... WHILE ... REPEAT

At run time, begin marks the start of a sequence that may be repeated. Begin serves as a
return point for the corresponding UNTIL, AGAIN, or REPEAT. When executing UNTIL, a
return to BEGIN will occur if top of the stack is false; for AGAIN and REPEAT, a return to
BEGIN always occurs.

Yerk Glossary 74

This is an immediate word.
__
begin-dp (-- addr)

Yerk Glossary 75

This variable contains the contents of dp, the user dictionary pointer,when Yerk starts up,
before a saved user dictionary is loaded.

 Example: begin-dp @ .h <return> \ Fetch and print in hex.
49B2 0-> \ Lowest address in the dictionary above the nucleus.

__
binType (-- BIN)

This constant leaves the file type (four ASCII characters) of Yerk modules.

See also: save TYPE txTYPE
__
bl (-- 32)

This constant leaves the ASCII value for "blank" on the stack.
__
blanks (addr count --)

Fills memory with blanks starting at addr for count number of bytes.

 Example: buf255 256 blanks\ Fills the default string buffer with blanks.

See also: padBL erase fill
__
bldvec (--)

This is the system execution vector for the word that builds objects from classes. You
should not alter the contents of bldvec, because it is solely for Yerk's internal use.

__
body> (pfa -- cfa)

Derives the code field address, cfa, form the parameter field address, pfa, of the word.

See also: >body cfa
__
bool (bool -- toolbool)

Converts a Yerk boolean into a Toolbox boolean. A Toolbox boolean is 16 bits wide with
the lower 8 bits and the higher 8 bits zero for false, non-zero for true.

 Example: true bool \ Convert boolean constant true
\ to a Toolbox boolean

Yerk Glossary 76

__
bottom (-- row)

Yerk Glossary 77

Returns the coordinate of the bottom of the front window.
__
branch (--)

Compiled into the definitions by the Yerk control words: ELSE, AGAIN, LOOP, +LOOP,
and REPEAT. Causes an unconditional branch to occur. Changes the value of the IP to
cause the branch to occur. For a more complete explanation of the Forth elements of Yerk,
see The Forth Encyclopedia, cited in the bibliography at the end of this manual.

__
buf255 (-- addr)

Leaves the address of a 256-byte buffer used for converting an addr-len format string into a
Toolbox-compatible str255 string. You can use this buffer as a temporary workspace,
provided this does not interfere with the string processing.

 Example: " Mary had a little lamb" \ Define a string literal.
. . <return> \ Print addr len.
22,20039 0->
buf255 . <return> \ Print addr of buffer.
20038 0->

See also: str255
__
build (--)

Defines the compile-time behavior of a word that itself defines multiple-cfa words. See Part
II.4 for more detail. See "codefields" for example.

This is an immediate word.
See also: prefix codefields do.. ..end

__
buttonID (-- 0)

Returns the toolbox constant that indicates a control is actually a button. This word is
defined in the file "ctl", and is an optional part of the system.

See also: checkID radioID useWfont vsID
__
bye (--)

Closes open files and returns control to the Finder via ExitToShell. Bye is executed when
Quit is selected from the File menu.

__

Yerk Glossary 78

bytes (n --)

Allocates n bytes as a named instance variable of an object. The instance variable's class is
Object. You can use bytes to map a Toolbox data structure as an object when named access
to some fields in the data structure is not needed.

Yerk Glossary 79

 Example: \ These are named instance variables of class Grafport.
:CLASS Grafport <SuperObject

16 Bytes graf1 \Unmapped
Rect Portrect
44 Bytes graf3 \ Unmapped
Var Text1 \ font, face,
Var Text2 \mode, size
32 Bytes graf2 \ Unmapped

See also: allot reserve
__
c! (b addr --)

Stores byte b at addr.
__
c+! (i addr --)

Adds the 8-bit increment i to the memory byte at addr.
__
c, (b --)

Stores byte b into the next available dictionary byte, and advances the dictionary pointer by
one.

__
c@ (addr -- b)

Fetches the byte at addr and puts it on the stack.
__
call (parameters -- results) : _name

Calls a routine in the Macintosh ROM. Parameters are passed to the routine on the stack. A
function's result is returned on the stack. With call you can access ALL Toolbox and
Operating Systems routines. See Part II.4, section "Calling the Toolbox".

 Example: (-- bool) \ Mouse button still down?
: stillDown?

word0 \ Puts 16 zero bits on stack for function result.
call stillDown \ Toolbox Event Manager function

\ to detect mouse-down.
word0 ; \ Pad result with 16 zero bits to

\ make a (32-bit) cell on stack.

Yerk Glossary 80

See also: asmCall
This is an immediate word.

__
case (--)

Yerk Glossary 81

Case provides a Pascal-like CASE conditional structure. If a particular clause is valid, then
the words between OF and ENDOF for that clause are executed; execution resumes as the
word after ENDCASE. If no clause is valid, then the words (if any) between the last
ENDOF and the ENDCASE are executed; execution resumes at the word after ENDCASE.
However, since each clause in the case statement leaves the argument on the stack,
ENDCASE consumes the top stack argument. If the statements between the last ENDOF
and the ENDCASE leave anything on the stack, the original argument must be SWAPped
back to the top of the stack. Otherwise the intended result will be thrown away and the case
argument will be returned.

 Example: : testCase (c --) \ A character is on top.
CASE

ascii 0 ascii 9 RANGEOF 0 ENDOF \ if digit, return 0
ascii A OF 1 ENDOF \ if A, return 1
ascii B OF 2 ENDOF \ if B, return 2
ascii C OF 3 ENDOF \ if C, return 3
4 swap \ otherwise return 4 (see above)
ENDCASE ;

See also: of rangeof endof endcase select{
This is an immediate word.

__
cfa (pfa -- cfa)

Derives the code field address, cfa , from the parameter field address, pfa, of the word.

 Example: 'aWord cfa \ "tick" leaves the pfa; cfa converts it to a cfa;
\ easier way is "'c aWord".

See also: body> link> name>
__
cfaLen (-- 4)

This constant leaves a 4 on the stack, the length of a cfa in the Yerk system.
__
checkID (-- 1)

Returns the toolbox constant that indicates that a given control is a checkbox. This word is
defined in the file ctl, and is an optional part of the system.

See also: buttonID radioID useWfont vsID
__
classErr (bool --) : resID

Yerk Glossary 82

ClassErr" allows an object print an error message from within a method, specifying the
object's address and class. ClassErr" will print the message if the boolean on top is true.
The string printed by classerr" must be in the resource file "yerk.rsrc".

 Example: :M READIT: ... read: theFile classErr" 150 ... ;M

Yerk Glossary 83

\ 150 is the resource ID of the string to be printed on error.
\ An error message may be:
Error from class ARRAY ::A2FE File read failed

This is an immediate word.
__
classname (^base -- addr len)

Converts ^base, the address of an object's data, to the name string of the object's class in
addr-len format.

 Example: fWind \ Leaves ^base
classname\ Leaves addr len .
type <return> \ Prints class's name.
Window 0->

__
clean1 (--)

Cleans up the filelist object when an abort occurs.
__
clean2 (--)

Cleans up the window related information when an abort occurs.
__
clen (-- 4)

This constant leaves a 4. This is an alias for cfaLen.
__
clrFCB (fcb --)

Clears (zeros) the fcb.

 Example: ffcb clrFCB \ Clear the default file object
__
cls (--)

Clears the current window (or grafport) and puts the cursor in the upper left corner.

See also: home
__
cmove (addr1 addr2 count --)

Yerk Glossary 84

Copies count bytes starting at addr1 to addr2. This uses the Mac Toolkit call BlockMove,
and can handle moving from high to low, or low to high memory.

 Example: \ Copy the 64 bytes (characters) at here to buf255.
here buf255 64 cmove

__

Yerk Glossary 85

codefields (n --)

Defines n as the number of cfa's a multiple-cfa data structure will have. See Part II.4.

 Example: \ This is a possible implementation of value; the actual
\ implementation is more efficient
2 prefix -> \ Define a prefix operator for value.
1 prefix ++> \ Define another prefix operator.
3 codefields \ A value will have 3 cfa's.

' -> Do.. ! ..End \ 2cfa is the store operation.
' ++> Do.. +! .. End \ 1cfa is the increment operation.
Do.. @ ..End \ 0cfa is the fetch operation (default).

: value build , ..End \ Define the compilation behavior of value
__
colcode (-- addr)

This constant returns the address for the code which executes colon definitions; the
traditional FORTH equivalent is doCol.

See also: fval mopdCode valCode vectCode
__
cold (--)

Initializes Yerk to its startup state, as if you had just opened the Yerk user dictionary you are
working on. You can execute cold to remove all dictionary entries since Yerk started up.

 Example: cold <return> \ Restart Yerk.
Macintosh Yerk version X.X
Bytes available: XXXXXX

0->
__
compile (--)

Compile is useful in describing compile-time behavior for a word that extends Yerk's
language model. Compile builds the word following it in the dictionary when the word
containing Compile is executed (generally during compilation of another word). All of
Yerk's control structures, such as IF, BEGIN and DO are implemented using Compile.

 Example: : myCompiler ... compile aWord ... ; \ definition of a compiling word
Immediate \ compiler words are immediate

Yerk Glossary 86

: xxx ... myCompiler; \ myCompiler executes

See also: [compile]
__

Yerk Glossary 87

compound (fptr:r fptr:n -- fptr)

Computes compound(r,n)=(1 + r)n, where r is the interest rate and n is the number (perhaps
nonintegral) of periods. When the rate is small, compound gives you a more accurate
computation than does the straightforward computation of (1 + r)n by addition and
exponentiation.

See also: annuity
__
constant (n --)

Constant creates a word, initializing its contents to n. When the word is executed, it puts n
on the stack. You can use constant to define (you guessed it) constants that you'll need later
in your program. This will help you understand your program when you read it later.

 Example: 1024 constant oneKay \ Define constant
oneKay . <return> \ Print oneKay
1024 0->

See also: scon fcon value variable
__
contBot (-- row)

Returns the coordinate of the bottom of the content of the region of the font window.

See also: contTop
__
contTop (-- row)

Returns the coordinate of the top of the content of the region of the font window.

See also: contBot
__
copym Parameter Stack: (-- n)

Method Stack: (n -- n)

Pushes a copy of the number on the methods stack onto the parameter stack.

See also: addm exgm dropm dupm popm pushm ^base
__
cos (fptr -- fptr)

Yerk Glossary 88

Computes cos(x) of the floating point number pointed to by fptr.
__
cot (fptr -- fptr)

Yerk Glossary 89

Computes cot(x) of the floating point number pointed to by fptr.
__
count (addr -- addr+1 count)

Converts a str255-format string (0th byte is count byte) to an addr-len format string.

 Example: bl word \ Input a blank-delimited word.
here \ The address of the str255-format string
count type \ Convert to addr len format and print

See also: buf255
__
cr (--)

"Prints" a carriage-return/linefeed (cr/lf) on the screen. If system vector pcrvec is vectored
to pcr, by executing +print, the cr sends a cr/lf to the printer.

See also: pcr ?lead scroll
__
create (--) : name

Creates a header for the definition of a word. The header consists of a field name, link field,
and code field. The code field contains the address of the next field, the parameter field.
Create leaves the dictionary pointer pointing to the presumptive) parameter field. You can
use CREATE to build code words, words that contain machine code at their parameter field.
CREATE is actually the system vector that is defaulted to the primitive (CREATE). You
should never have to change this vector.

 Example: \ This code word is from file "date".
(secs dateRec --)
Create secs2date \ Converts seconds to a date.

popA0 \ pop register A0
popD0 \ pop register D0
"Secs2Date" asmCall

next, \ End compilation.

See also: sCreate
__
crosscurs (--)

Changes the cursor to the predefined cross form.

See also: ibeamcurs pluscurs watchcurs cursor
__

Yerk Glossary 90

csp (-- addr)

This value is the stack pointer position when compilation of a colon word or class is begun.
Csp is used for compilation error-checking.

Yerk Glossary 91

See also: !csp ?csp
__
cstate "c-state" (-- bool)

This value is a boolean which is true while a class is being compiled. It is analogous to state
which is true while a colon word is being compiled.

See also: c[?class state
__
ctlexec (part# ctlhandle --)

This is an optional word defined in the source file "ctlwind". Executes the Exec: method for
the control object. Part# is toolbox indicator for what part or type of control was clicked
on.

__
ctlhit? (^wind -- bool)

Determines if a content click is a hit on the control' area, and if so, processes that click by
tracking the control, if appropriate, and then executing the control's handler. ^wind is a
pointer to the owner window. The bool returned indicates whether or not the word did the
processing on the click. This is an optional word defined in the source file "ctlwind".

__
ctlproc (^wind -- bool)

This is a :proc word and is passed as the completion routine for control handling. This is an
optional word defined in the source file "ctlwind".

__
curs (-- bool)

This value is the boolean which controls displaying of the cursor. If curs is true, the cursor
is displayed; if curs is false the cursor is hidden.

 Example: : -curs false -> curs ;

See also: +curs -curs
__
cursor (cursid --) : name

This is a simple data type defined as a mcfa defining word with a single action. The
definition is in the file QD, and is a good example of mcfa usage. It is used to define the
words crosscurs, watchcurs, pluscurs, and ibeamcurs, which change the cursor in use.
Cursid indicates the resource id number to use for the cursor definition. Types one through

Yerk Glossary 92

four inclusive are used by the screen.

See also: crosscurs ibeamcurs pluscurs watchcurs
__
cvtClip (--)

Yerk Glossary 93

This vector may be filled by your application to take care of converting the clip during
suspend or resume events. Default is null.

See also: suspend resume mouseMoved inForeGround
__
c[(--)

Stops compilation within a Class definition to resume run state. Sets cstate = 0. Used in
conjunction with]c.

This is an immediate word.
__
d+ (d1 d2 -- dsum)

Adds two double numbers leaving their sum.
__
d. (d --)

Prints a double number using the current number base as the conversion radix.
__
d.r (d w --)

Prints a double number using the current number base, right-justified in a field w characters
wide. The entire number is printed even if it exceeds the field width.

__
d< (d1 d2 -- bool)

Compares two signed double numbers. If d1 is less than d2, leaves a true flag; otherwise,
leaves a false flag.

__
d= (d1 d2 -- bool)

Compares two signed double numbers. If d1 is equal to d2, leaves a true flag; otherwise,
leaves a false flag.

__
d> (d1 d2 -- bool)

Compares two signed double numbers. If d1 is greater than d2, leaves a true flag;
otherwise, leaves a false flag.

__

Yerk Glossary 94

dabs (d -- ud)

Leaves the absolute value of a signed double number.

 Example: -47 0 \ Put -47 on the stack as a double number.
dabs d. <return> \ Convert to absolute value and print it..

Yerk Glossary 95

47 0->
__
dblTicks (-- dblTicks)

Leaves the maximum number

 Example: 'aWord cfa \ "tick" leaves the pfa; cfa converts it to a cfa;
\ easier way is "'c aWord".

See also: body> link> name>
__
de' (--) : word

Decompiles a yerk definition. Uses the configuration in the demod dialog box.

See also: dode
__
decho (-- bool)

This value is the boolean that controls echoing to screen of source loaded from disk. If true,
echoing to screen is turned on.

 Example: : +echo true -> decho ;

See also: +echo -echo
__
decimal (--)

Sets the base, the numeric conversion radix, to 10. You can put decimal at the beginning of
each source file to be sure the base is 10.

See also: .d base hex
__
default{ (--)

Begins the default clause of a select{...}select conditional structure. The words within
default{ and }end are executed if none of the preceding clauses are valid.

 Example: \ Prints "zero", "one", "two , or "none of the above".
(n --)
: testSel
select{

0 Is{." zero" }end

Yerk Glossary 96

1 Is{." one" }end
2 Is{." two" }end
default{." none of the above"

}select ;

This is an immediate word.

Yerk Glossary 97

See also: select{ }select is{ }is
__
deg2rad (ftpr -- fptr)

Converts the floating point number pointed to by ftpr from degrees to radians.
__
depth (-- n)

Leaves the number of 32-bit cells occupying the stack (before n was placed on top of the
stack).

__
dfa (^class -- dfa)

Derives the data field address, dfa which contains the length of the non-indexed data
associated with the class), from the ^class or pfa of a given class definition.

__
digit Successful: (c base -- n2 T)

Unsuccessful: (c Base -- F)

Converts the ASCII character c using base into its binary equivalent n2, and leaves a true
flag; if conversion fails, leaves a false flag only. Digit is a primitive used by (number).

 Example: 54 \ ASCII for '6'.
10 \ Conversion base.
digit .. <return> \ Convert to digit.
1 6 0-> \ The 1 is a true flag.

__
dirFind (n fcb --)

Calls the HFSDispatch Procedure of the Mac File Manager. n is the call number and fcb is
the file parameter block. See IM-IV.

__
disk-evt (-- 0)

This word is called whenever a disk insert event occurs. The default definition prints a
mount message on the screen. This word can be redefined through the use of :f or by
substitution of vector 7 in fEvent.

See also: actv-evt key-evt mouse-evt null-evt upd-evt app4-evt
__
dispose (addr --)

Yerk Glossary 98

Releases the nonrelocatable block of heap pointed to by th cell whose address is on the stack
and zeroes the cell.

This is an immediate word.
__

Yerk Glossary 99

dispose> (--) : block

A prefix that releases a nonrelocatable block of heap whose pointer is stored in a Yerk data
structure. Dispose> can operate on values, named input parameters, local variable, and
modules. Must be used within a word; cannot be used in the interpret state.

 Example: free . <return>
2023 0->
: getRid dispose> myMod ; <return>
getRid free . <return>
3564 0-> \ Heap space occupied by module has

\ been made available.
__
dlgWind (-- 1)

This constant is the resource ID for a window having no title bar and a double click outline.

See also: docwind rndwind
__
dliteral Compile: (d --)

Run: (-- d)

At compile time, compiles the double number on the stack as a literal into the definition
being compiled. When the definition is executed later, d is put on the stack.

 Example: : testDlit <[5467203 2234435]> dliteral ;
\ testDlit puts 9,596,825,255,504,963 on top.

This is an immediate word.
__
dnegate (d -- d)

Leaves the two's compliment of a double precision number.
__
do Compile: (-- yerk)

Run: (n1 n2 --)

At run time, DO begins repetitive execution of the sequence of words up to LOOP or
+LOOP. The loop limit is n1 and the initial value of the loop index is n2. Upon reaching
LOOP, the index is incremented by one (upon reaching +LOOP, the index is incremented by
the number on the stack). The DO loop is executed until the index equals or exceeds the
limit. When the loop index equals or exceeds the limit, the loop parameters are discarded
and execution continues after LOOP or +LOOP.

Yerk Glossary 100

 Example: 10 0 DO i . LOOP \ Prints from 0 to 9.

See also: i j leave

Yerk Glossary 101

This is an immediate word.
__
do' (--) : class

Lists all objects of class class.

See also: doolist
__
do.. "do-dot-dot" (--)

Begins the definition of one of the operations (cfa's) of a multiple-cfa word. Used in
conjunction with ..End. See part II.4 for more detail.

 Example: \ This is a possible implementation of value; the actual
\ implementation is more efficient.
2 prefix -> \ Define a prefix operator for value.
1 prefix ++> \ Define another prefix operator.

3 codefields \ A value will have 3 cfa's.
' -> Do.. ! ..End \ 2cfa is the store operation.
'++> Do.. +! ..End \ 1cfa is the increment operation.
Do.. @ ..End \ 0cfa is the fetch operation (default).

: value build, ..End \ Define the compilation behavior of value.
__
docWind (-- 0)

This constant is the resource ID of a document window.

See also: dlgwind rndwind
__
dode (--)

Brings out the demod dialog box for word decompilation.

See also: de'
__
doolist (--)

Lists members of a class. Uses the configuration in the demod dialog box.

See also: do;
__

Yerk Glossary 102

doTasks (--)

Executes the task in taskList. Tasklist contains the cfa's of up to four words that fEvent
executes when it receives a null event. This provides a means of executing

Yerk Glossary 103

tasks in the background when Yerk is in its event loop. (You must load optional file "Tasks" to
use this facility.)

See also: addtask killtask tasklist
__
dp (-- addr)

This value is the dictionary pointer; it is the address of the next free memory location above
the dictionary. The number may be read by Here and altered by Allot.

See also: begin-dp flen room msize here
__
dpl (-- n)

Returns the number of digits to the right of the decimal on double integer input. This may
be used to compute the output column location of a decimal point in user generated
formatting. The default value on single number inputs is -1.

See also: number interpret ?num
__
drop (n --)

Discards the number on top of the stack.

See also: 2drop fdrop
__
dropcfa Methods Stack: (-- cfa:drop)

This value is the cfa of the word drop. You can plug dropcfa into an object when you want
the handler for a method to just be drop. Similarly, you can plug nullcfa into an object when
you want the handler for a method to be null (Yerk's "do-nothing" word).

__
dropm Method Stack: (n --)

Drops the number on the methods stack.

See also: addm copym exgm dupm popm pushm
__
dump (addr n --)

Dumps the contents of memory starting at addr for n bytes in a hex and ASCII format.

Yerk Glossary 104

 Example: $ be98 20 dump <return>
Dump from address:BE98

0 1 2 3 4 5 6 7... 0123456789ABCDEF

Yerk Glossary 105

BE90 A9 1D 00 00 BB
BEA0 1E 72 BC E3 00 r...j..........

__
dup (n -- n n)

Duplicates the number on top of the stack.

See also: 2dup fdup -dup
__
dupm Methods Stack: (n -- n n)

Duplicates the number ob top of the methods stack.

See also: addm copym exgm dropm popm pushm
__
e (-- fptr)

This is the constant which places the value for e on the floating point heap and returns its
pointer.

See also: pi ln(1 0) 0.0 1.0
__
e. (fptr --)

Prints the number pointed to by fptr in scientific notation, using 26 digits.

See also: e.r f.r
__
e.r (fptr w --)

Prints the number pointed to by fptr in scientific notation, in a field w characters wide.

See also: e. f.r
__
echo (char --)

An alternative handler for echovec. Echos the char in question to the printer.

See also: echovec
__
echovec (--)

Yerk Glossary 106

This system vector is executed in Yerk to echo keystrokes. When Yerk starts up, echovec is
vectored to (emit) which prints a character on the screen only. Selecting Echo to Printer
from the Yerk menu vectors echovec to echo, which prints a character on the screen and
printer (this is the same as +print).

__

Yerk Glossary 107

else Compile: (yerk -- yerk)
Run: (--)

At run time, if the boolean on top of the stack before the IF is true, the words between if and
else are executed; otherwise, the words between else and then are executed.

 Used in this format: IF ... ELSE ... THEN

This is an immediate word.
__
emit (chr --)

Prints the character (lower 8 bits of the number) on the stack to the screen or printer by
executing the system vectors emitvec and pemitvec. Whether the screen and/or printer are
used depends on the contents of emitvec and pemitvec. When Yerk starts up, emitvec is
vectored to (emit) and pemitvec is vectored to drop. So, the default action of emit is to print
a character on the screen only. Selecting Echo to Printer from the Yerk menu vectors
echovec to echo, which prints a character on the screen and the printer (this is the same as
+print). The system value OUT is incremented for each character transmitted.

 Example: ascii t emit <return>
t 0->

See also: space pemit +print
__
emitvec (--)

This system vector contains the cfa of the word that preforms character output to the
primary device, usually the screen. When Yerk starts up, emitvec is vectored to (emit), the
primitive that prints a character on the screen using the DrawChar routine in QuickDraw.
All input/output in Yerk is vectored via system vectors such as emitvec so that you can tailor
I/O to your needs.

 Example: 'c (plotEmit) \ Get cfa of primitive that sends a character to a
\ hypothetical plotter.

-> emitvec \ Put it in emitvec

45 emitvec \ Send a character to the plotter
__
enclose (addr c -- addr n1 n2 n3)

Parses beginning at addr for a text string delimited by character c. Leaves the following
parameters:

addr --address from which parsing began;

Yerk Glossary 108

n1 --offset to the beginning of the string;
n2 --offset to the end of the string; and
n3 --offset to the first unexamined character.

Enclose will not proceed past an ASCII null, treating it as an unconditional delimiter.

Yerk Glossary 109

__

Yerk Glossary 110

endcase (n --)

Ends a case conditional structure. Used in conjunction with CASE.

This is an immediate word.
__
endof (--)

Ends each clause in a case conditional structure. Used in conjunction with OF.

This is an immediate word.
__
eof (-- -39)

This constant is the ioResult returned by Macintosh ROM routines for an end-of-file
condition.

__
erase (addr n --)

Clears (fills with zeros) memory starting at addr for n bytes.

 Example: buf255 256 erase \ Erase buf255

See also: blanks fill
__
errbeep (--)

Sounds the standard error tone. Defined as: 5 beep.
__
errlog (--)

Execute this word if you want to revector the output to send a stack dump to a file that will
be created and named "ErrLog". If the file already exists, nothing happens.

__
exec> (--) : word

This prefix operator executes the contents of the operand following it as the cfa of a word.
The operand may be a named input parameter, local variable, value, vect, or sysvect. You
don't need to prefix a vect or sysvect with exec>

 Example: : doGraph { functionCfa \a b -- }
...

Yerk Glossary 111

exec> functionCfa\ The cfa of a function to be graphed is passed
\ as a named input parameter; it is executed
\ when needed

... ;

This is an immediate word.

Yerk Glossary 112

__
execute (addr --)

Executes the word whose compilation address (code field address) is on the stack.

 Example: 'c myFunc value func \ Value func contains cfa of myFunc
func execute \ Func puts cfa on top; execute executes it

 \ Another way is "exec>func".

See also: ,exec
__
exgm Parameter Stack: (n1 -- n2)

Method Stack: (n2 -- n1)

Swaps the top two numbers on the methods and parameter stacks.

See also: addm copym dropm dupm popm pushm
__
exit (--)

Terminates execution of the current word or method, and returns control to the next higher
word on the return stack. Exit may be used in IF ... ELSE ... THEN, BEGIN ... REPEAT,
BEGIN ... WHILE ... UNTIL, CASE ... ENDCASE, or Select{ ... }select structures. Exit
may not be used inside a DO loop.

 Example: : testExit { doneFlag -- }
doneFlag \ Exit if true
IF ."Quitting." exit
ELSE ." Entering doGraph." doGraph
THEN
cr ."Graph plotted". ;

true testExit <return>
Quitting. 0->

false testExit <return>
Entering doGraph.
Graph plotted. 0->

This is an immediate word.
__
exp (fptr -- fptr)

Yerk Glossary 113

Computes ex for the floating point number pointed to by fptr.
__
exp1 (fptr -- fptr)

Computes ex-1 for the floating point number pointed to by fptr.
__

Yerk Glossary 114

exp2 (fptr -- fptr)

Computes 2x for the floating point number pointed to by fptr.
__
exp21 (fptr -- fptr)

Computes 2x-1 for the floating point number pointed to by fptr.
__
expect (addr count --)

Transfers characters from the keyboard to memory starting at addr until a return is
received or count characters have been input. Characters are echoed to the primary and
secondary devices by executing the system vector echovec. When Yerk starts up, echovec is
vectored to (emit), so that characters are echoed to the screen only. Expect adds a null at the
end of the text string.

 Example: buf255 10 expect <return> \ Expect 10 chars at buf255
abcdefghij 0->
buf255 10 type <return> \ Type the 10 chars at buf255
abcdefghij 0->

See also: expvec
__
expvec (--)

This system vector allows a user-installable expect routine. The default routine is expect.
For a more complete discussion of system vectors, look in Part II.4.

__
extend (w -- n)

Extends the sign of a 16-bit number, making it a 32-bit signed number. You can use extend
to handle results from Toolbox calls which return 16-bit signed integers.

 Example: $ FF23 \ -221 as a 16-bit signed int
extend \ Sign-extend it.
dup .h cr. <return>
FFFFFF23 \ -221 as a 32-bit signed number.
-221 0-> \ Print it as a decimal.

See also: i->|
__
external (--)

Yerk Glossary 115

Changes the default drive to external floppy drive. The system will now look for all files it
needs on the external drive (including binaries for module files or resource files). Can be
imbedded in load files to indicate that a file is on the external drive.

 Example: Sony

Yerk Glossary 116

// SomeCode
External
// SomeMoreCode

See also: sony
__
false (-- 0)

Leaves a false flag, zero.

See also: true not
__
f* (fptr0 fptr1 -- fptr0)

Multiplies two floating point numbers on the float heap and leaves a single floating point
result with its pointer on the stack.

__
f+ (fptr0 fptr1 -- fptr0)

Adds two floating point numbers on the float heap and leaves a single floating point result
with its pointer on the stack.

__
f, (fptr --)

Compiles a 10-byte floating point number off the float heap into the next available
dictionary location, and advances the dictionary pointer. Removes the pointer to the float
heap from the stack.

__
f- (fptr0 fptr1 -- fptr0)

Subtracts two numbers on the float heap leaving the result. Leaves a pointer to the result on
the stack.

__
f.r (fptr w d --)

Prints the floating point number pointed to by fptr without exponents, in a field w wide
and with d decimal places. If there are more than d decimal places, it rounds.

See also: e. e.r
__
f/ (fptr0 fptr1 -- fptr0)

Yerk Glossary 117

Divides the floating point number pointed to by fptr0 by the one pointed to by fptr1
leaving the result. Leaves a pointer to the result on the stack.

__
f0< (fptr -- bool)

Yerk Glossary 118

Compares the floating point number with zero. If less than zero, leaves a true flag;
otherwise, leaves a false flag.

__
f0= (fptr -- bool)

Compares the floating point number with zero. If equal to zero, leaves a true flag;
otherwise, leaves a false flag.

__
f0> (fptr -- bool)

Compares the floating point number with zero. If greater than zero, leaves a true flag;
otherwise, leaves a false flag.

__
f< (fptr0 fptr1 -- bool)

Compares two floating point numbers on the float heap. If the one pointed to by fptr0 is
less than the one pointed to by fptr1, leaves a true flag; otherwise, leaves a false flag.

__
f<= (fptr0 fptr1 -- bool)

Compares two floating point numbers on the float heap. If the one pointed to by fptr0 is
less than or equal to the one pointed to by fptr1, leaves a true flag; otherwise, leaves a
false flag.

__
f<> (fptr0 fptr1 -- bool)

Compares two floating point numbers on the float heap. If the one pointed to by fptr0 is
not equal to the one pointed to by fptr1, leaves a true flag; otherwise, leaves a false flag.

__
f= (fptr0 fptr1 -- bool)

Compares two floating point numbers on the float heap. If they are equal, leaves a true flag;
other-wise, leaves a false flag.

__
f> (fptr0 fptr1 -- bool)

Compares two floating point numbers on the float heap. If the one pointed to by fptr0 is
greater than the one pointed to by fptr1, leaves a true flag; otherwise, leaves a false flag.

__
f>= (fptr0 fptr1 -- bool)

Yerk Glossary 119

Compares two floating point numbers on the float heap. If the one pointed to by fptr0 is
greater than or equal to the one pointed to by fptr1, leaves a true flag; otherwise, leaves a
false flag.

Yerk Glossary 120

__
fAbs (fptr -- fptr)

Takes the floating point number pointed to by fptr and returns its absolute value.
__
fCon (fptr --) : name

FCon creates a word, initializing its contents to the floating point value pointed to by the
pointer on the stack. When the word is executed, it puts the floating point number on the
float heap, and returns its pointer to the stack.

See also: fValue
__
fDrop (fptr --)

Deallocates a floating point value on the float heap and drops its pointer from the stack.
__
fDup (fptr0 -- fptr0 fptr1)

Duplicates a floating point value on the float heap and returns its pointer from the stack.
__
fence (-- addr)

This value is the address below which forget will not operate. The default value of fence is
the name field address of the last word in the nucleus, so that you don't forget only words in
the user dictionary.

__
fEvent (-- ^base)

This event is the default (and should be the only) Event object used by Yerk. It exists in the
nucleus. See Part III.4, Events.

__
fFcb (-- ^base)

This File object is the default I/O parameter block used by Yerk and exists in the nucleus. If
you need a parameter block, don't use fFcb but instead use the New: method of class
loadFile, the stack of fcb's. See the III.2 Files.

__
file-install (fcb type sig --)

Sets the file type and signature of the file specified by fcb. Each of type and signature is 4

Yerk Glossary 121

ASCII characters as one 32-bit number.
__
filInit (--)

Yerk Glossary 122

Initializes the file objects. This word is intended to be part of the objinit vector, which
initializes system objects as a startup.

__
fill (addr n b --)

Fills memory with byte b starting at addr for n bytes.

 Example: \ This is a possible definition of erase.
 : erase { addr n -- }
 addr n 0 fill ; \ Fill memory with 0's.

See also: erase blanks
__
find Successful: (-- pfa len T) : word

UnSuccessful: (--F)

Takes the word out of the input stream and searches for it in the dictionary. Returns a
boolean to indicate if it found it or not. If so, returns the pfa and the length of the reference
in the dictionary.

See also: (find) sFind
__
find-method (selhash objpfa -- objpfa 1cfa)

Performs a high speed search to find a method specified by the selhash, a selector hash
value, in the superclass chain of the object specified by objpfa. If successful, leaves objpfa
and the 1cfa of the method. If unsuccessful, it aborts and prints message:

Msg# 108 :method not found in class
XXXX ::

__
find-window (Tpoint -- region ^window)

Calls the Window Manager routine FindWindow to find the window in which a mouse-
down event occurred at Tpoint, a Toolbox point in global coordinates. Leaves the region of
the window in which the mouse-down occurred and ^window, the pointer to the window
object's private data.

__
fInfo (-- ptr)

Leaves a relative pointer to the Finder information area. The following code will scan the
information block, and print the Vref#, file type, version and file name for each file passed
by the Finder.

Yerk Glossary 123

: .fInfo CR fInfo \ get pointer to Finder Information block
dup w@ ." Documents to be "
IF ." Printed ELSE ." Opened:" THEN
4+ dup 2- w@ 0 \ get number of files passed

Yerk Glossary 124

DO CR
 dup w@ . \ print Vref#
 2+ dup @ sp@ 4 type drop \ print file type
 4+ dup c@ . \ print file version
 2+ count 2dup type \ print file name
 + align \ ...advance to next file
LOOP drop ;

__
firstchr (-- char)

Returns the char stored at here + 1.
__
flen (-- len)

Leaves the length of the user dictionary to be saved (dp - [begin-dp]). Flen is used by save.
__
fLit (-- fptr)

Takes ten bytes from the next dictionary address, allocates an entry on the float heap, and
returns its pointer on the stack. Within a colon definition, fLit is automatically compiled
before each floating point number encountered in the input text.

__
fLiteral Compile: (fptr --)

Run: (-- fptr)

At compile time, compiles the floating point number pointed to by the number on the stack.
This word is an immediate, and so executes within a colon definition. The run-time action
of fLiteral is provided by fLit.

This is an immediate word.
See also: fLit, literal

__
float> (fptr -- n)

Takes the floating point number pointed to by fptr and converts it to a 32-bit number
leaving the result on the stack.

__
fNegate (fptr -- fptr)

Takes the floating point number pointed to by fptr and returns its complement.
__

Yerk Glossary 125

fNumber Successful: (addr -- fptr T)
UnSuccessful: (addr -- F)

Yerk Glossary 126

Attempts to convert the str255 format string at addr to a floating point number. If
successful returns its pointer and a true flag; otherwise returns a false flag.

forget (--) : word

Deletes the word from the dictionary and ALL entries above it (i.e., in higher memory) .
Issues message "in protected dictionary" if the word is below fence, and aborts.

Example: forget doMyAppl \ Deletes doMyAppl and all words
\ above it in the dictionary

 forget (emit) <return> \ Try to forget a nucleus word.
 (EMIT)? in protected dictionary
 File Stack:

Token=(EMIT) ::
 0->

forward (--) : name

Creates a word which is to be defined later with :f, the special colon compiler for forward-
referenced Yerk words, because :f makes the word behave like a colon definition. If you
forget to define a forward-referenced word, the word issues the message: "Unresolved
forward reference to: AWORD at address: XXXX" and aborts. To forward reference an
object, define a value having the same name as the object-to-be. Later create the object as
you would normally.

 Example: forward drawSpiral \ Forward reference the word.
... \ More code which may call

\ drawSpiral.
:f drawSpiral ... ;f \ Define drawSpiral.

0 value pandora \ Forward reference an object.
... \ More code including refer-

:Class Cube \ ences to pandora, and
 <Super Object \ definition of pandora's

...
;Class \ class Cube.

...
Cube pandora \ Object pandora finally created.

__
fOver (fptr0 n -- fptr0 n fptr1)

Creates a copy on the floating point heap of the floating point value pointed to by the second
number down on the stack. Returns a pointer to the new value on the stack

__

Yerk Glossary 127

fprect (-- addr)

This is a system object of class rectangle used in calculation for scrolling fWind.
__
free (-- n)

Yerk Glossary 128

Calls the Memory Manager routine MemFree to find the total number of bytes available on
the application heap. Free is useful in debugging the compilation and loading of modules
and Yerk objects that allocate space on the heap. Because of fragmentation, you may not be
able to allocate a single block as large as the value returned by Free.

 Example: free . <return>
7094 \ 7094 total bytes available.

__
freeBlk (-- n)

Calls the Memory Manager routine MaxMem to find the size in bytes of the largest block
available on the application heap. MaxMem compacts the heap and purges all purgeable
blocks before returning its result. Freeblk is useful in debugging the compilation and
loading of modules and Yerk objects that allocate space on the heap.

 Example: freeblk . <return>
 3024 \ Largest block available.
__
from (--)

This construct is used to define modules, so that the exported words are properly located in
the dictionary. See Part II.4 for full description of the us of modules.

Used in the form: From modName Import{ word1 word2 word3 }

See also: import{ ;Module :Module module
__
fvalCode (-- addr)

This constant returns the address of the code executed by fValue

See also: colCode modCode valCode vectCode
__
fValue (fptr --) : name

General purpose data variable for floating point values. See Part III.11.

Used in the form: 1.2 fValue foo

See also: Value

fWind (-- ^obj)

Yerk Glossary 129

This is the default Window object and is the window you normally see when using Yerk.
fWind exists in the nucleus.

__
g->l (Tpoint -- Tpoint')

Yerk Glossary 130

Converts a Toolbox point (higher 16 bits y, lower 16 bits x) in global coordinates into a
Toolbox point in the local coordinates of the current grafport.

See also: l->g
__
get-ctl-obj (ctlHandle -- ^obj)

Given a handle to a control record, returns the object associated with the control. Assumes
that the control has been initialized be Yerk using Set-ctl-obj.

__
get-event (eventMask -- eventType)

Calls the Toolbox Event Manager routine GetNextEvent repeatedly until an event matching
eventMask is detected. Leaves the type of the first non-null event detected.

See also: ?event @event-msg ?terminal
__
getEvent (-- bool)

Calls the Toolbox Event Manager routine GetNextEvent (and SystemTask) or
WaitNextEvent (depending on the Rom version of your Mac) to get the next event from the
event queue into the private data of the Event object. Leaves a true flag if an event that the
user's application should handle is available; otherwise, leaves a false flag. GetEvent is used
by the next: method of object fEvent.

__
getHsize (handle -- size)

Obtains this handle's size. This word is used by class handle; you should normally use the
Size: method of that class.

See also: setHsize
__
getMtxt (addr len --)

Loads an entire menu bar from a file. GetMtxt loads the text and handler cfas of each
menu's items, and Initializes and "wakes up" each Menu object and object menuBar so that
the Toolbox is aware of it. See Part III.6 on menus.

__
getPMtxt (addr len --)

Loads hierarchical and popUp menus without clearing the menubar. See Part III.6 on
menus.

Yerk Glossary 131

__
getPtxt (addr len --)

Fills the pathlist object with the paths specified in the named file. See Part III.10 on Files
__

Yerk Glossary 132

getRes (resID -- handle) : type

Calls the toolbox routine GetResource, returning the resource's handle; or zero if not found.
GetRes can be used interactively, as well as within colon definitions.

See also: (GetRes)
__
getString (resID -- addr len)

Takes the resource ID of a STR resource and returns an addr-len pair. The string must be in
the currently open chain of resource files.

__
global (-- n) : name

Using this word, you can get the value of a global quantity by name. This is defined in the
Yerk module TOOL.BIN.

 Example: (-- bool) \ Mouse button still down?
: topOfMem

global memTop ; \ get the global variable 'memTop'
\ on the stack.

This actually compiles the absolute address of 'memTop' ($108) and '-base' in the definition
of 'topOfMem'. So if you decompile 'topOfMem', you would see the definition is:

: TOPOFMEM 264 -BASE ;

This is an immediate word.
__
gotoxy (x y --)

Positions the cursor at the coordinate point on the stack.

See also: @xy
__
grayRgn (-- l t r b)

Returns the coordinates of the rectangle bounding the region of all graphic screens installed
on the Mac.

__
growPtr (n ptr --)

Yerk Glossary 133

Calls the Memory Manager routine SetPtrSize to increase the size of the nonrelocatable
block on the application heap whose relative pointer is on the stack by n bytes.

__
growZone (--)

Yerk Glossary 134

This vector holds the cfa of a word to be executed when the system needs more heap space.
You may want to assign GrowZone a new cfa if you allocate heap space that could be
deallocated in favor of a later heap request. See Part II.4.

__
hash (addr -- hashVal)

Hashes the str255-format name string at addr into a 16-bit hash value. Names of selectors
and named instance variables are hashed in Yerk to conserve memory.

 Example: " Macintosh" \ The name.
str255 -base \ Address of string literal.

 hash . <return> \ Print 16-bit hash value.
24481 0->

__
heap> (-- ^obj) : classname

Heap> takes a classname out of the input stream and dynamically allocates an object of that
class. Heap> returns a pointer to the object on the heap. If there was insufficient space to
create the object, it returns a zero. The memory allocated is a non-relocatable block.

__
here (-- addr)

Leaves the address of the next available dictionary location. Here is often used as the
location for temporary string manipulation.

Example: here \ Next available dictionary location.
begin-dp @ \ Beginning dictionary location.
 - . <return> \ Print size of user dictionary.
30210 0->\ This is equivalent to flen.

__
hex (--)

Sets the value base, the number conversion radix, to 16. (Hex is short for hexadecimal.)

See also: .h $ base decimal
__
hGetstate (handle -- state)

Gets this handle's state. This word is used by class handle - you should normally use the
getState: method of class handle.

Yerk Glossary 135

See also: lock unlock hSetState
__
hld (-- addr)

Yerk Glossary 136

This value is the address of the latest Hold character during numeric output conversion.
__
hold (c --)

Inserts a character into an ASCII string being built by an <# ... #> sequence.

Example: 2223243 0 <# # # # # $ 2d hold # # # #> type
\ 2D is hex for an ASCII dash '-'.
222-3243 0->

__
home (--)

Moves the cursor to the upper left-hand corner of the current grafport.
__
hSetState (state handle --)

Sets the state of the handle with state. This word is used by class handle - you should
normally use the setState: method of class handle, having originally gotten the state by
calling getState: method of handle.

See also: lock unlock hGetState
__
i (-- n)

Copies the current contents if the innermost DO loop index onto the stack. Used within a
DO ... LOOP structure. Note that i never equals the loop limit. So, if the loop limit is 10 and
the initial value of the index is 0 (as in 10 0 DO ... LOOP), i will attain the values 0 through
9, inclusive.

 Example: 16 0 DO i . LOOP \ Will print:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0->

__
i! (n --)

Stores n at the memory location pointed to by i, the innermost DO loop index.

Example: \ This method fills an indexed object of 4-byte elements with the cfa of
null, Yerk's "do-nothing" word.
:M CLEAR: limit: self 4* idxdata: self + \
upper limit

ixaddr: self \
lower limit

DO nullcfa i! 4

Yerk Glossary 137

+LOOP ;M
__
i+ (n -- n+i)

Adds i, the innermost DO loop index, to the number on the stack.
__
i- (n -- n-i)

Yerk Glossary 138

 Subtracts i, the innermost DO loop index, from the number on the stack.
__
i->l (16-bit-cell -- 32-bit-cell)

Converts the 16-bit half-cell on top of stack into a full 32-bit Yerk cell, extending the sign
bit. i->l is useful in handling the result from Macintosh ROM routines that return a 16-bit
signed integer on the stack. i->l differs from Extend in that i->l pushes two bytes onto the
stack while extending the sign, whereas extend only extends the sign of a 16-bit integer
contained in the 32-bit cell on top of stack, converting it into a 32-bit signed integer. Word0,
a related word, pushes two zero bytes onto the stack.

See also: extend unpack makeint word0
__
i@ (-- n)

Fetches the number at the memory location pointed to by i, the innermost DO loop index.

Example: \ This is a possible definition of type.
: type { addr count \ temp -- sum }

0 -> temp\ Initialize sum temporary.
addr count + addr \ Loop index cycles through
DO i@ ++> temp LOOP \ all memory to be summed.
temp ; \ Leave sum on top.

__
ibeamcurs (--)

Changes the operating cursor to the I-Beam cursor, used in editing.

See also: crosscurs pluscurs watchcurs cursor
__
ic! (c --)

Stores the character on top of stack at the memory location pointed to by i, the innermost
DO loop index.

Example: \ This is a possible definition of erase.
: erase { addr count -- }

addr count + addr \ Loop index cycles through
DO 0 ic! LOOP ; \ all memory to be erased.

__
ic@ (-- c)

Yerk Glossary 139

Fetches the character at the memory location pointed to by i, the innermost DO loop index.

Example: \ This is a possible definition of type.
: type { addr len -- }

Yerk Glossary 140

addr len + addr \ Loop index cycles through
DO ic@ emit LOOP ; \ all memory to be typed.

__
id. (nfa --)

Prints a definition's name given its name field address on the stack.

Example: 'c gotoxy \ Cfa of gotoxy.
>name \ Convert to nfa.
id. <return> \ Print name.
GOTOXY 0->

See also: traverse .name
__
idxBase Parameter Stack: (-- idxbase)

Methods Stack: (^base -- ^base)

Leaves the base address of the indexed data of the object whose ^base, pointer to the
object's data, is on the methods stack.

Example: \ This method is in class Object.
(-- addr) (Leave address of 0th indexed element.)
:M IXADDR: idxbase ;M

__
if Compile: (-- yerk)

Run: (bool --)

At compile time, IF reserves space at addr for a branch offset, leaving an address and a
pairing value for error checking. At run time, if the boolean on top of stack is true, the words
between IF and ELSE are executed; otherwise, the words between ELSE and THEN are
executed. If there is no ELSE and the boolean is false, execution resumes at the first word
following THEN.

Used in the form: IF ... THEN or
IF ... ELSE ... THEN

This is an immediate word.
See also: exit leave then else

__
immediate (--)

Marks the most recently defined word so that it is executed when encountered in a colon
definition, instead of being compiled into it. Internally, marking a word as immediate means
setting its precedence bit. [compile] can be used to force compilation of an immediate word.

Yerk Glossary 141

Example: : aWord ... ; immediate
\ aWord will be executed instead of being compiled
\ when it appears in a definition.

__

Yerk Glossary 142

import{ (--) : word1 word2 … wordn

Used in defining modules in the following way:

From modName import{ word1 word2 word3 }

See Part II.4 for a full description of defining modules.
__
in (-- offset)

This value is the byte offset within the text input buffer from which text is to be accepted.
IN is used and updated by word as it parses a word from the text input buffer and transfers it
to Here as a str255-format string (0th byte is count byte).

__
inForeGround (-- b)

This value tells the user whether the application is in the foreground (true) or background
(false).

See also: suspend resume mouseMoved cvtClip
__
inFront (-- -1)

This constant specifies to applicable Window Manager routines that the window in question
is to be the front window on the desktop.

__
initFont (--)

Sets the current grafport's font, face, size, and mode. These are initialized as follows: font,
Monaco (4); face, plain (0); size, 9; mode, srcCopy (0).

__
install (--)

Runs the install procedure, which is exactly the same as selecting install from the menu bar.
See Part II.5 for a complete description.

__
interpret (--)

This vector invokes the outer text interpreter. By default, this vect executes (intrp).
__
intSwap (w1:w2 -- w2:w1)

Yerk Glossary 143

Given a long word on the stack, this word will swap the high word with the low word.
__
is{ (--)

Yerk Glossary 144

Begins each case in a select{ conditional structure. Used in conjunction with }end. The
select{ conditional structure is like the case structure, except that the indices must start at 0
and must be contiguous. The advantage of using select{ is that it executes faster than case.
See Select{ for example.

This is an immediate word.
__
isAppWindow (ptr -- ptr b)

Inspects the windowKind of the window pointed to by ptr and returns a true flag if the
window belongs to your application. It is used when switching out of Yerk in multiFinder.

__
j (-- n)

Copies the index of the next outer DO loop onto the stack. May be used only within a
nested DO loop. Note that j never equals the outer loop's loop limit. So, if the loop limit is
10 and the initial value of the index is 0 (as in 10 0 DO ... LOOP), j will attain the values 0
through 9, inclusive.

 Example: (--) \ Print multiplication tables from 2 to 10.
: tables
11 2 \ Outer loop limits; index is j
DO 11 1 \ Inner loop limits; index is i

DO i j * . space
LOOP \ Print element.
cr \ Carriage return after each table.

LOOP ;
__
key (-- chr)

Leaves the ASCII value of the next keystroke by executing keyvec. Key listens and handles
other events, such as mouse-down and activate events, while waiting for a key-down event.
Note that there is also a key defined in the nucleus, called (key), which only knows about
key-down and mouse-down events. You should never need to use the nucleus (key).

 Example: \ The highest level code of an application could be:
: runMyAppl
 BEGIN key \ Listen to ALL events, returning only

\ after a key-down event.
key: [frontWindow]

\ Send the character to the active Window
\ object for processing by key: method.

 AGAIN ; \ Do it again. This is an infinite loop.

Yerk Glossary 145

See also: rekey
__
key! (--)

Yerk Glossary 146

Resets the keyboard to use key and not to do mouse processing.

See also: rekey
__
key-evt (-- keyword modsword T or F)

Handles key-down events for object fEvent. Leaves keyword, the msg instance variable of
fEvent in which the lowest byte gives the ASCII code and the next higher byte gives the key
code, modsword, the mods instance variable of fEvent which gives the state of the mouse
button and the modifier keys at the time of the event, and a true flag. The true flag signals to
the Next: method of fEvent that a keystroke has been detected and so fEvent may stop
listening to events and return control to the word that executed key. A false flag is left if the
key event occurs on a window that is not part of your application (while using multiFinder).
This word can be redefined through the use of :f or by substitution of vector 3 in fEvent.

See also: actv-evt disk-evt mouse-evt null-evt upd-evt app4-evt
__
keyVec (--)

This system vector is the execution vector for key. It contains the cfa of the word that gets a
character from the keyboard. At system startup, keyvec is vectored to the "smart" key that
listens to all events.

__
killHandle (handle --)

Calls the Memory Manager routine DisposHandle to release the block whose handle is on
the stack. The space the block occupied now becomes part of the free space of the
application heap. You should normally use the release: method of class Handle.

__
killPtr (ptr --)

Calls the Memory Manager routine DisposPtr to release the space occupied by the
nonrelocatable block whose relative pointer is on the stack. The space the block occupied
now becomes part of the free space of the application heap.

__
killTask (cfa --)

Removes the word whose cfa is on the stack from the task list which fEvent performs when
it receives a null event. If the cfa is not one of those in the taskList issues message "task not
found" and aborts. (You must load optional file "Tasks" to use this facility.)

 Example: 'c dispClock killTask
\ Removes displaying clock from the task list.

Yerk Glossary 147

See also: addtask dotasks tasklist
__
l->g (Tpoint -- Tpoint')

Yerk Glossary 148

Converts a Toolbox point (higher 16 bits y, lower 16 bits x) in local coordinates of the
current grafport into a Toolbox point in global coordinates .

See also: g->l
__
Land (n1 n2 -- b)

Leaves the logical and of n1 and n2. Treats any non-zero n as boolean 1.

See also: and Lor Lxor
__
latest (-- nfa)

Leaves the name field address of the topmost word in the current vocabulary.

 Example: \ Compile a word into dictionary.
: newWord ... ;
latest id. <return> \ Print its name string.
NEWWORD 0->

__
leave (--)

Forces termination of a DO loop at the next iteration by setting the loop limit equal to the
current value of the index; the index itself is not tampered with. Execution proceeds
normally until LOOP or +LOOP is encountered. Leave may appear within other control
structures which are nested.

 Example: : testLeave
10 0
DO i . i 7 = \ Leave loop after index=7.

 IF leave THEN
LOOP ;

testleave <return>
0 1 2 3 4 5 6 7 0->

__
lfa (pfa -- lfa)

Derives the link field address, lfa, from the parameter field address, pfa, of the word.

See also: >link trav
__

Yerk Glossary 149

limit Parameter Stack: (-- limit)
Method Stack: (^base -- ^base)

Leaves the number of indexed elements of the indexed object whose ^base, pointer to the
object's data, is on the methods stack.

Yerk Glossary 150

Example: \ This method is from class Object
(-- limit)
:M LIMIT: ?ixObj \ Is it an indexed object?
 limit ;M \ Get limit

__
line (dh dv --)

Draws a line on the screen from the current pen position for dh and dv pixels.
__
lineTo (h v --)

Draws a line on the screen from the current pen position to the location given by h, v .
__
link> (lfa -- cfa)

Derives the code field address, cfa, from the link field address, lfa, of the word.

See also: cfa
__
lit (-- n)

Pushes the (32-bit) long memory word at the next dictionary address onto the stack. Within
a colon definition, lit is automatically compiled before each single-precision number greater
than 65,535 encountered in the input text.

See also: wlit
__
literal Compile: (n --)

Run: (-- n)

At compile time, compiles the number on the stack as a single-precision literal. This word is
an immediate, and so executes within a colon definition. The run-time action of literal is
provided by either lit or wlit.

Example: : testLit1 <[1024 4 *]> literal . ;
testlit1 <return> \ Print 4096.
4096 0->

\ The next definition is equivalent to testLit1.
: testLit2 4096 . ;
testLit2 <return> \ Print 4096.
4096 0->

Yerk Glossary 151

This is an immediate word.
See also: dliteral lit wlit

__
load-error (-- addr)

Yerk Glossary 152

This system constant points to a memory location that contains an error number if an error
occurred while loading a dictionary image at cold start. Use @ to get error number.

__
lock (handle --)

Locks the handle given on the stack.

See also: unlock hGetState hSetState
__
locked (--)

Prevents a module from being unlocked upon completion. This is necessary if you have
action vector words stored in a module which remain active after the export word finishes: if
LOCKED is not used unpredictable results will occur. Use MUNLOCK when you are
completely finished with all code in the module. (LOCKED must be coded somewhere
between :MODULE and ;MODULE in your module.)

Example:

:Module FooMod
Locked

See also: mlock munlock ?mlock
__
ln (fptr -- fptr)

Computes ln(x) for the floating point number pointed to by fptr.
__
ln(10) (-- fptr)

This is a constant which returns a pointer to the value which corresponds to ln(10). This is
useful for computing log10 values. Example:

: log ln log(10) f/;
__
ln1 (fptr -- fptr)

Computes ln(x+1) for the floating point number pointed to by fptr.
__
lock (handle -- ptr)

Calls the Memory Manager routine hLock to lock the relocatable block whose handle is on

Yerk Glossary 153

the stack. Leaves a relative pointer to the locked (now unrelocatable) block. You will most
likely use the lock: method of class Handle.

See also: killptr
__

Yerk Glossary 154

log (fptr -- fptr)

Computes log10(x) for the floating point number pointed to by fptr.
__
log2 (fptr -- fptr)

Computes log2(x) for the floating point number pointed to by fptr.
__
log21 (fptr -- fptr)

Computes log2(x+1) for the floating point number pointed to by fptr.
__
loop Compile: (yerk --)

Run: (--)

At compile time, compiles (loop) and uses addr to compute an offset to DO; n is used for
compiler error checking. At run time, DO begins repetitive execution of a sequence of
words delimited by LOOP. Upon reaching LOOP, the index is incremented by one. Until
the new index equals or exceeds the limit, execution loops back to just after DO; otherwise,
the loop parameters are discarded and execution continues forward.

 Example: \ Print integers from 0 to 9.
: testDoLoop 10 0 DO i . LOOP ;
testdoloop <return>
0 1 2 3 4 5 6 7 8 9 0->

This is an immediate word.
See also: +loop leave

__
Lor (n1 n2 -- b)

Leaves the logical or of n1 and n2. Treats any non-zero n as boolean 1.

See also: or Land Lxor
__
m! Parameter Stack: (n --)

Methods Stack: (addr -- addr)

Stores n at the long memory word specified by addr on the methods stack.
__
m* (n1 n2 -- d)

Yerk Glossary 155

Multiplies n1 and n2 leaving their double-precision product on the stack. ("M" here refers to
"mixed-precision.")

__
m/ (d n -- rem quot)

Yerk Glossary 156

Divides n into d, a signed double number, leaving their single-precision remainder and
quotient. ("M" here refers to "mixed-precision.")

__
m/mod (ud1 u2 -- u3 ud4)

Divides u2, an unsigned number, into ud1, an unsigned double number, leaving their
unsigned single-precision remainder, u3, and unsigned double-precision quotient, ud4. ("M"
here refers to "mixed-precision.")

__
m0 "m-zero" (-- baseAddr)

This value is the base address of the methods stack, and is the initial value of the methods
stack pointer, the address of the top cell,. R0 is used by mp! to initialize the stack pointer.

 Example: m0 .h <return> \ Print base of methods stack.
1561C 0->

__
m@ Parameter Stack: (-- n)

Methods Stack: (addr -- addr)

Fetches the number at the address on the methods stack and pushes it onto the parameter
stack.

__
makeInt (32-bit-num -- 16-bit-num)

Drops the higher 16 bits of the number on top of the stack. This is handy in some Toolbox
calls that require an Int value.

See also: pack i->l
__
max (n1 n2 -- max(n1,n2))

Leaves the greater of two numbers.

 Example: 334 45765 max . <return>
45765 0->

__
maxDict (maxSize --)

Sets the maximum allowable dictionary size; the size that the dictionary will actually be set
to on a 512K Mac or larger. Extra space is allotted to the heap.

__

Yerk Glossary 157

mdepth (-- n)

Leaves the number of cells pushed on the methods stack. You may find mdepth useful in
debugging your programs.

__

Yerk Glossary 158

menubar (-- addr)

Returns the address of the system object representing the menubar. This is an object of class
mbar.

__
menuId (-- n)

Leaves the menu ID number of the last clicked menu.

See also: theMenu mItem
__
meta (--)

Leaves the number of cells pushed on the methods stack. You may find mdepth useful in
debugging your programs.

__
mfa (^class -- ifa)

Leaves the methods field address of a class whose ^class, its parameter field address, is on
the stack. The methods field of the dictionary entry of a class contains the pointer to the last
entry in the class's methods dictionary.

 Example: ' Window \ ^class (pfa) of class Window.

mfa \ Ifa of Window.
dup @ \ Address of methhash of last method.
swap .h cr .h <return>
BA3A \ Mfa
BAFA 0-> \ Address of last method.

__
MFSname (addr len -- addr' len')

Converts the given filename to its equivalent MFS filename by stripping out path
specifications. This can be used wherever you need the simple filename from the fully
qualified path.

__
min (n1 n2 -- min(n1,n2))

Leaves the lesser of two numbers.

 Example: 334 45765 min . <return>
334 0->

Yerk Glossary 159

__
mitem (-- n)

Global value holding the item number of the last menu click.

See also: theMenu menuID

Yerk Glossary 160

__
mlock (cfa --)

Locks a module that has been loaded into memory, so that it stays there, even if it is not
being executed.

Example: grepmod \ Loads the module into memory
'c grepmod mlock \ Locks the module in place.

See also: munlock ?mlock
__
mod (n1 n2 -- rem)

Leaves the remainder of the division of n1 by n2, n1/n2.

 Example: 23 3 mod . <return> \ 23/3 = 7 + 2/3
2 0-> \ remainder is 2.
-23 3 mod . <return>
2 0->
23 -3 mod . <return>
-2 0->
-23 -3 mod . <return>
-2 0->

See also: /mod
__
modCode (-- addr)

This constant returns the address of the code executed by a module reference.

See also: colCode fvalCode valCode vectCode
__
module (--) : modName

The special compiler for modules. Takes a module name from the input stream, compiles it
twice to determine what addresses may need to be relocated at load time, and saves it in a
binary file.

See also: :module from import{
__
mouse-evt (-- 0)

Handles mouse-down events for object fEvent. Mouse-evt updates the Mouse object

Yerk Glossary 161

theMouse, and finds the window and the region of the window in which the mouse-down
occurred. Then executes the clause of a select{ ... }select conditional structure that matches
the region ID, an integer in the range 0..8. The region ID's and the action taken for each are:

ID region executes

Yerk Glossary 162

0 in desk, null case

desk
1 in menu bar

click: method of menuBar
2 in system window

sys
3 in content region

content: method of window, the "meat" of the
application

4 in drag region

drag: method of window
5 in grow region

grow: method of window
6 in go-away region

close: method of window if there is a valid click
7 in zoomBox

doZoomWind
8 in zoomBox

doZoomWind

 Finally, mouse-evt leaves a zero on the stack for the next: method of fEvent, to signify that a
mouse-down is not a key event. This word can be redefined through the use of :f or by
substitution of vector 1 in fEvent.

See also: actv-evt disk-evt key-evt null-evt upd-evt app4-evt
__
mouseMoved (--)

This is a vector defaulted to nullcfa. The user may put in his own response to a multifinder
mouseMoved event.

See also: suspend resume cvtClip inForeGround
__
moveHi (handle --)

Moves the data referred to by handle to high memory. This is always called by the lock:

Yerk Glossary 163

method of class handle.

See also: lock unlock
__
mp! (--)

Initializes the methods stack pointer, the address of the top cell, with the contents of value
m0, the base address of the methods stack. mp!, in effect, clears the methods stack.

__
mp0...5 (-- parm0...5)

Pushes a copy of the n+3rd methods stack cell (counting the top cell as the first) onto the
parameter stack. mpN is used in handling named parameters and local variables. You
should have little reason to use it, unless you really want to juggle numbers on the methods
and parameter stacks.

__
mp@ (-- addr)

Leaves the current contents of the methods stack pointer, the address of the top cell, on the
parameter stack.

__

Yerk Glossary 164

ms0...5 (n --)

Puts the number on the parameter stack into the n+3rd methods stack cell (counting the top
cell as the first). msN is used in handling named parameters and local variables. You should
have little reason to use it unless you really want to juggle numbers on the methods and
parameter stacks.

__
mSelect (point -- item# menuID)

Calls the menu manager to track a menu selection. Used primarily by the Click: method of
class mBar.

__
msg# (--) : resID

At compile time takes the resID out of the input stream and compiles a literal and an error-
handling primitive into the current word. At run time prints the string resource associated
with the given resID as an advisory message. Does not execute an abort.

This is an immediate word.
__
msize (-- addr)

This system constant points to the number of bytes allocated in the Yerk dictionary. Use @
to get #bytes.

__
munlock (modpfa --)

Unlocks a module that has been locked into memory.

See also: mlock ?mlock
__
mw! Parameter Stack: (n --)

Methods Stack: (addr -- addr)

Stores the low-order 16-bits of the number on the parameter stack into the memory word at
the addr on the methods stack.

__
mw@ Parameter Stack: (-- n)

Methods Stack: (addr -- addr)

Fetches the (16-bit) memory word at the address on the methods stack and pushes it onto the
parameter stack.

Yerk Glossary 165

__
myCtl (-- ^ctl)

Yerk Glossary 166

When used inside of a control action handler, this word returns a pointer to the actual control
record. For an example of its usage, see Part III.7. This word is not loaded into the pre-
compiled system and is defined in the file "Ctl".

__
myDoc (-- addr len)

Leaves an addr-len pair representing the string that is the name of the start-up document.

Example: myDoc type
yerk.com 0->

__
n>count (nfa -- addr len)

Leaves the address and length of a name field, suitable for use by "type".
__
name> (nfa -- cfa)

Derives the code field address, cfa, from the name field address, nfa, of the word.

See also: cfa
__
need (n --)

Releases modules until n bytes are available.

See also: release purge ovblock
__
negate (n -- -n)

Leaves the two's complement of a number. Negate changes the sign of a number.

 Example: 35 negate . <return> \ Print -35.
-35 0->

See also: dnegate
__
nevent (--)

Vector called inside of interpret: file. During recompile of Yerk, it is set to a simple action,
but after recompiling Yerk, it should be set by hand to (nevent). (nevent) allows compiling to
occur in the background which is not allowed while recompiling Yerk.

__

Yerk Glossary 167

newHandle (n -- handle)

Calls the Memory Manager routine NewHandle to allocate a new relocatable block of n
bytes from the application heap and leaves a handle to the block. The handle is the

Yerk Glossary 168

absolute address of the master pointer to the block; or zero if the call fails. The block is initially
marked unlocked and unpurgeable.

See also: >ptr
__
newPtr (n -- ptr)

Calls the Memory Manager routine NewPtr to allocate a new nonrelocatable block of n
bytes from the application heap and leaves a relative pointer to the block. The value of the
ptr will be negative if the call fails.

__
next, (--)

Compiles the value of next at the end of a code definition into the dictionary. Useful in
defining code words. See Part II.4.

This is an immediate word.
See also: popD0 popA0 pushD0 pushA0

__
nfa (pfa -- nfa)

Derives the name field address, nfa, from the parameter field address, pfa, of the word.

See also: >name
__
not (bool1 -- bool2)

Examines a boolean on top of stack and leaves a true flag if it is false; otherwise, leaves a
false flag. Not is identical to 0=.

 Example: -45 not . <return> \ -45, being non-zero, is a boolean true.
0 0-> \ 0 is a boolean false.

__
null (--)

Does absolutely nothing. Null is Yerk's "do-nothing" word, equivalent to a no-operation in
other languages. You can plug nullcfa, a predefined constant containing the cfa of null, into
an element of an object that needs cfa's of handler words, if you want nothing to be done by
a particular handler.

See also: nullcfa
__
null-evt (-- 0)

Yerk Glossary 169

Handles null events for object fEvent, while the window is enabled, by calling the operating
system's routine systemTask.

Yerk Glossary 170

See also: actv-evt disk-evt key-evt mouse-evt upd-evt
tasklist app4-evt

__
nullCfa (-- cfa:null)

This constant is the cfa of null, Yerk's "do-nothing" word. You can plug nullcfa into an
element of an object that needs cfa's of handler words, if you want nothing to be done by a
particular handler. In fact, objects of classes X-array, Menu, Window, and others when
created "wake up" with many of their indexed elements filled with nullcfa. This is so that if,
for example, a menu selection transfers control to an element of the Menu object which has
not been initialized, you won't end with a system error box on your screen.

 Example: \ This is the classinit: ("wake-up") method for X-array.
:M CLASSINIT: limit 0 \ Stuff all elements

DO nullcfa i to: self LOOP \ with nullcfa.
;M

See also: dropcfa
__
nullOSstr (-- addr)

Leaves a pointer to a str255-format string of length 0.
__
nullVal (-- 0)

Leaves a zero on the stack. NullVal is an optional word in file "Ctl".
__
number (addr -- d)

Converts a character string at addr+1 to a double precision number; the byte at addr
contains the string's length but is ignored. Conversion proceeds until a blank is encountered
- the string of digits must end with a blank - any character which is not a digit, decimal point
or minus sign will cause an error. The position of the last decimal point encountered (if any)
is left in DPL. If conversion fails, an error message is issued. If number is difficult to use in
your application try the more general (number) or ?num.

See also: digit dpl (number) @val ?num
__
objInit (--)

This system vector is executed when Yerk starts up. It is initialized with the word YERK,
which loads the menu bar and initializes Yerk's internal data.

__

Yerk Glossary 171

objLen Parameter Stack: (-- len)
Method Stack: (addr -- addr)

Yerk Glossary 172

Returns the data length of the object whose address is on the methods stack. Used as the
primitive of the Length: method of class object.

__
of Match: (n1 n2 --)

No match: (n1 n2 -- n1)

Begins a clause in a case conditional structure. OF compares the case index, n1, with the
OF index, n2. If they are equal, OF drops both and the words between the OF and the
corresponding ENDOF are executed. If they are not equal, OF drops the OF index and
execution continues after the corresponding ENDOF.

This is an immediate word.
See also: case

__
ok (--)

Prints the Yerk prompt, commonly 0->. The "0" means there are no values on the stack, the
"-" means the current base is decimal, and the ">" is always present. The "-" changes to a
"$" if the base is hexadecimal, and to "?" if the base is anything else.

 Example: 345 -65765 hex ok <return>
2> 2>
\ There are two numbers on the stack, and the base is hex.
\ The first prompt is printed by the ok you typed in, the second by the
\ ok in quit

__
opennr (--)

Opens Yerk's resource file "yerk.rsrc" as the current resource file.
__
openResFile (addr len --)

Opens the file indicated by the addr-len pair as the current resource file.
__
or (n1 n2 -- n3)

Leaves the bit-wise or of n1 and n2 as n3. Or works as a logical or if you want to use n1,
n2, and n3 as booleans (non-zero = true; zero = false).

 Example: 9 4 or . <return> \ Or 12 (1001) with (0100).
 13 0-> \ Result: 13 (1101).

true false or . <return> \ Or two booleans.

Yerk Glossary 173

1 0-> \ Result: 1 (nonzero = true).

See also: xor and Lor
__
out (-- #chars)

Yerk Glossary 174

This value is incremented by emit, type, space, and spaces after each character transmitted.
You can change and examine OUT to control formatting of output.

 Example: 0 -> out \ Initialize out to zero.
." All's well in the bit mines." cr out . <return>
All's well in the bit mines.
32 0-> \ 32 characters output since out was zeroed.

__
ovblock (size -- ptr)

Ovblock attempts to get a non-relocatable block of heap of the size requested. It will
compact memory, purge heap objects marked purgeable, and execute the vector GrowZone,
if necessary to get the requested space. If it was unable to get the requested space it signals
an error #121.

See also: need
__
over (n1 n2 -- n1 n2 n1)

Copies the second number on the stack to the top of stack.

 Example: 17 2 over . . . <return>
17 2 17 0->

See also: 2over pick
__
pack (x y -- x:y)

Packs two 32-bit numbers into one 32-bit number. Only the lower 16 bits of x and y are
used. You can use pack to convert a coordinate point into a Toolbox-compatible point.

See also: makeint unpack
__
pad (-- addr)

Leaves the address of the text output buffer, a temporary area of memory of 256 bytes. Yerk
uses PAD to hold information (text, numbers) for intermediate processing. You may use it
to the same end, but be aware that output words like emit and type may interfere by using
pad as well.

__
padBL (addr len --)

Pads a str255-format string with blanks and adjusts its count byte accordingly. Addr is the

Yerk Glossary 175

address of the 0th byte, the count byte, of the string and len is its desired blank-padded
length.

 Example:
0->" Bit-mining stocks rose today." \ Put string at buf255.

Yerk Glossary 176

0->2drop \ Drop the addr and len.
0->buf255 50 padbl \ Pad with blanks to 50 chars.
0->buf255 count type <return> \ Convert to addr-len format and type it.
Bit-mining stocks rose today.bbbbbbbbbbbbbbbbbbbbb 0->

\ The b's mean blanks.

See also: blanks -trailing
__
paramText (addr0 len0 addr1 len1 addr2 len2 addr3 len3 --)

Sets global text-substitution strings for Dialogs through a call to ParamText. Thereafter,
dialogs will automatically substitute strings 0 through 3 for the character sequences "^0"
through "^3". This word is optional and is included in the file "Dialog".

__
parse (addr chr -- addrnext addr len)

Parses text starting at addr scanning for the char producing the address for the next parse
and the string parsed.

__
pat (--)

Displays the palette of system pen patterns.
__
patch (--) : oldWord newWord

Patch changes all references to oldWord to references to newWord. So if a word had
oldWord in its definition, now newWord will be executed instead of oldWord. Patch only
works if both oldWord and newWord are colon definitions (words compiled with : and ;)
and DO NOT have local variables or named input parameters.

 Example: patch doGraph doGraph2
\ This changes all earlier references to doGraph to the revised word
\ doGraph2.

This is an immediate word.
__
path (-- path)

This value contains the sArray object being used by the OPEN: method fo finding files on
an HFS system.

__
pcr (--)

Yerk Glossary 177

Sends a carriage return and a line feed to the printer.
__
pcrvec (--)

Yerk Glossary 178

This system vector is the execution vector for pcr. When Yerk starts up, pcrvec is vectored
to null, Yerk's "do-nothing" word. +print vectors pcrvec to pcr so that you or Yerk can send
a carriage return and linefeed to the printer.

__
pemit (chr --)

Sends a character to the printer.

 Example:: ascii Q pemit \ Print a 'Q' on the printer.
__
pemitvec (--)

This system vector is the execution vector for pemit. When Yerk starts up, pemitvec is
vectored to drop. +print vectors pemitvec to pemit so that you or Yerk can send a character
to the printer.

__
pfa (nfa -- pfa)

Derives the parameter field address, pfa, from the name field address, nfa, of a word.

See also: >body
__
pi (-- fptr)

This is a constant which returns a pointer the the floating point value for π.

__
pick (n -- val)

Copies the n-th stack cell (not counting n) onto the top of the stack. The top of stack is the
first stack cell. Thus 1 pick is equivalent to dup, and 2 pick is equivalent to over. Pick is
useful for references beyond the second item.

 Example: 49 14 78 3 pick .s \ Put three numbers on stack,
\ pick the third cell, and print
\ contents of stacks.

Parameter Stack:
49 $ 31

 78 $ 4E
14 $ E
49 $ 31
Return Stack:

Yerk Glossary 179

16286 $ 3F9E
 16744 $ 4168

Methods Stack:(--Empty Stack--)
4->

__
pluscurs (--)

Yerk Glossary 180

Changes the cursor to the predefined cursor type plus, used in spreadsheets.

See also: crosscurs ibeamcurs watchcurs cursor
__
popA0 (--)

Compiles the hexcode to move a value from the data stack to register A0. For a fuller
explanation of the use of this word and the next three, see Part III.4.

This is an immediate word.
See also: pushA0 create next,

__
popA1 (--)

Compiles the hexcode to move a value from the data stack to register A1. This word is in
the optional file "pops".

This is an immediate word.
See also: pushA1 create next,

__
popD0 (--)

Compiles the hexcode to move a value from the data stack to register D0.

This is an immediate word.
See also: pushD0 create next,

__
popD1 (--)

Compiles the hexcode to move a value from the data stack to register D1. This word is
defined in the optional file "pops".

This is an immediate word.
See also: pushD1 create next,

__
popm Parameter Stack: (-- n)

Methods Stack: (n --)

 Pops the number on the methods stack and pushes it onto the parameter stack.

See also: pushm addm copym exgm dropm dupm
__

Yerk Glossary 181

popPort (portAddr --)

Pops the portAddr on the stack to restore it as the current grafPort.

See also: pushPort

Yerk Glossary 182

prefix (value --) : name

This word is used in the definition of multiple cfa words to define a prefix that will call into
effect one of the pre-defined behaviors for a mCFA word. The name taken from the input
stream is the prefix to be executed, and the value taken from the stack indicates which cfa is
to be executed. Note: the 0CFA is the default behavior for a mCFA word. See the example
in Part II.4.

See also: codefields do.. ..End build
__
ptype (addr len --)

 Prints an (addr len format) string on the printer.
__
ptypevec (--)

This is the execution vector for ptype. When Yerk starts up, typevec is vectored to 2drop, so
that it does nothing. +print vectors ptype to ptypevec, so you can send a string to the printer.

__
pushA0 (--)

This word compiles in the code to move a value from register A0 to the data stack. This
word is only useful inside of a code word definition. For a fuller explanation of the use of
this word and the next three, see the description in Part II.4.

This is an immediate word.
See also: popA0 create next,

__
pushA1 (--)

This word compiles in the code to move a value from register A1 to the data stack. This
word is an optional word, defined in the file "pops".

This is an immediate word.
See also: popA1 create next,

__
pushD0 (--)

This word compiles in the code to move a value from register D0 to the data stack.

Yerk Glossary 183

This is an immediate word.
See also: popD0 create next,

__
pushD1 (--)

Yerk Glossary 184

This word compiles in the code to move a value from register D1 to the data stack. This
word is an optional word, defined in the file "pops".

This is an immediate word.
See also: popD1 create next,

__
pushm Parameter Stack: (n --)

Methods Stack: (-- n)

Pops the number on the parameter stack and pushes it onto the methods stack.

See also: popm addm copym exgm dropm dupm
__
pushPort (-- portAddr)

Methods Stack: (-- n)

Pushes the portAddr onto the stack for restoration later.

See also: popPort
__
query (--)

Inputs up to 128 characters from the keyboard until a carriage is typed. Query puts the
acquired text at the address TIB and sets the value IN to zero.

__
queryvec (--)

The system vector that holds the word used to do a query. Can be changed by the user to
change the way in which query behaves. For a full explanation of system vectors, please
see Part II.4.

See also: query
__
quit (--)

Returns control to the Yerk interpreter or an installed application. Quit executes quitvec,
which must be vectored to the highest level word of an installed application. If an
application is not installed, quit clears the return stack, sets state to 0 (stops interpreting),
and prints the Yerk prompt, usually 0->. Quit is the highest level word in Yerk.

See also: abort
__
quitvec (--)

Yerk Glossary 185

This system vector is the execution vector for quit. If quit is executed and quitvec is
vectored to null, the default word, control is returned to the keyboard, providing access to
the Yerk interpreter. If quit is executed and quitvec is vectored to an application-defined
word, control is transferred to that word, sealing the user from the Yerk interpreter. The
word quitvec is vectored to is usually the highest level word of

Yerk Glossary 186

the application which starts the application. Install, the word that you use to prepare a final
application, assumes that the contents of quitvec and abortvec have been vectored to the
highest level word and the error handler of the application.

 Example: 'c myAppl -> quitvec
__
r (-- n)

Copies the top number on the return stack onto the parameter stack. You should use the
return stack with great care. Use named input parameters and local variables instead; they
are easier to use and a lot friendlier.

__
r0 "r-zero" (-- baseAddr)

This value is the base address of the return stack, and is the initial value of the return stack
pointer, the address of the top cell. R0 is used by rp! to initialize the stack pointer.

 Example: r0 .h <return> \ Print base of return stack.
1516C 0->

__
r> "r-from" (-- n)

Pops the number on top of the return stack and pushes it onto the parameter stack. You
should use the return stack with great care. Use named input parameters and local variables
instead; they are easier to use and a lot friendlier.

__
rad2deg (fptr -- fptr)

Converts the floating point number pointed to by fptr from radians to degrees.
__
radioID (-- 2)

Returns a system constant to indicate that a given control is a radio button. Not defined in
the pre-built system, this is an optional word in the file "ctl".

See also: buttonID checkID vsID
__
random (n -- rand#)

Generates a pseudo-random number in the range 0..n-1 . n should be less than or equal to
65535.

 Example: (--) \ Print a random number in range 0..99 .

Yerk Glossary 187

: rand100 100 random . ;
rand100 rand100 rand100 <return>
56 23 78 0->

__
rangeof Compile: (--)

Run: (val lo hi --)

Yerk Glossary 188

Used in the same way as OF in a CASE statement, this word provides conditional execution
if val is within the range lo to hi.

This is an immediate word.
__
rdepth (-- n)

Leaves the number of cells occupied on the return stack. You may find rdepth useful in
debugging your programs.

__
rekey (--)

Once this word is executed, all events are handled by the Yerk system. This word is
executed by the system vector objinit on startup.

See also: key!
__
release (--)

The cfa of this word is what is normally kept by the vector GrowZone. Release disposes of
the heap memory allocated to Yerk system modules. If you change the contents of
GrowZone, whatever word you install in the vector should call release to dispose of the Yerk
modules, in case the space they occupy on the heap is needed.

__
repeat Compile: (yerk --)

Run: (--)

At run time, repeat forces an unconditional branch to the first word after begin.

Example: : aWord { x y \ done? -- result }
... \
Initialization code.
BEGIN

done? \
Done is a boolean.
WHILE \
Execute words up to repeat

firstWord \
if done? is true.

Yerk Glossary 189

secondWord

…
REPEAT ; \
Branch to word after begin.

This is an immediate word.
__
reserve (n --)

Allocates and erases n bytes in dictionary at here.

 Example: 200 reserve \ Reserve 200 bytes at here.

See also: allot
__

Yerk Glossary 190

reserveMem (n --)

ReserveMem creates free space for a block of n contiguous bytes at the lowest possible
position in the current heap zone. It will try every available means to place the block as
close as possible to the bottom of the zone, including moving other blocks upward,
expanding the zone, or purging blocks from it. Note that ResrvMem doesn’t actually allocate
the block.

See also: moveHi lock unlock
__
reset (--)

Causes the Mac to reboot. Executing this word has exactly the same effect as pressing the
RESET button on the side of the machine.

__
restPort (--)

This word restores the previously saved grafport, so that screen output is again written to
that grafport. The inverse of this word is SavePort. These words only have a single location
to save the port in, so calling SavePort twice, followed by RestPort twice, will not restore
the original port. It is best to use pushPort and popPort.

See also: savePort pushPort popPort
__
resume (--)

This is a vector defaulted to nullcfa. The user may put in his own response to a multifinder
resume event.

See also: suspend mouseMoved cvtClip inForeGround
__
returnToModal (--)

Call this word after handling an enabled item in a modal dialog.
__
rndWind (-- 16)

This constant is the resource ID of a document window with round corners.

See also: docWind dlgWind
__
room (-- room)

Yerk Glossary 191

Leaves the number of bytes left in the dictionary. You can run the Install utility to change
this.

Example: room . \ Print the number of bytes left.
16543 0-> \ On a Mac II, this number will

\ be MUCH larger.

Yerk Glossary 192

__
rot (rhymes with boat) (n1 n2 n3 -- n2 n3 n1)

Rotates "left" the top three stack cells, so that the third cell becomes the first.

See also: pick
__
round (fptr -- fptr)

Rounds the floating point number pointed to by fptr and returns the result.
__
rp! (--)

Initializes the return stack pointer, the address of the top cell, with the contents of value r0,
the base address of the return stack. rp!, in effect, clears the return stack.

__
rp@ (-- addr)

Leaves the current contents of the return stack pointer, the address of the top cell, on the
parameter stack.

__
rsrc (-- ptr) : name

Rsrc is an mCFA word with a single cfa.

Example: 'type STR 113 rsrc joe

Later referencing joe produces a relative pointer to the string on the heap. Two cautions in
the use of rsrc, 1) the resource may by relocated and your pointer no longer valid if you do
anything that disturbs the heap between accessing the resource and using it, 2) you must
ascertain that the appropriate resource file is open.

Example: opennr
joe count type
prefix token not found 0->

See also: spList
__
s, (toggle-mask --)

Takes the text string at here, Exclusive-ORs the byte at here with toggle-mask, and
compiles the string into the dictionary.

__

Yerk Glossary 193

s->d (n -- d)

Sign-extends a single-precision number to form a double-precision number.

Example: -221 \ -221 as a 32-bit signed integer.
s->d \ Sign-extend to 64-bit signed integer.
2dup hex u. u. cr \ Print double number in hex.

Yerk Glossary 194

decimal d. <return> \ Print double number in decimal.
FFFFFFFF FFFFFF23 \ -221 as double number in hex.
-221 0-> \ -221 as double number in decimal.

__
s0 "s-zero" (-- baseAddr)

This value is the base address of the parameter stack, and is the initial value of the parameter
stack pointer, the address of the top cell,. S0 is used by sp! to initialize the stack pointer.

Example: s0 .h <return> \ Print base of parameter stack.
14FDC 0->

__
s= (addr1 len1 addr2 len2 -- bool)

Compares two (addr len format) strings and leaves a true flag if they are equal; otherwise,
leaves a false flag.

Example: scon str1 "Simon" \ Define two string constants.
scon str2 "Samson"
str1 str2 s= . <return> \ Are they equal?
0 0-> \ 0 means false.

See also: (s=) $=
__
save (--)

Saves to disk the current image of the user dictionary, the part of the dictionary above the
nucleus. You can find the saved image in the yerk folder.

 Example: save yerk.com \ Write to disk an image of current user dictionary
\ as yerk.com.

__
saveNuc (--)

This is the equivalent of a SAVE for the nucleus; writes the Yerk nucleus out to disk. Use
this after you have made a patch to the nucleus. This word is defined in the Install Module.
Be certain you have a backup of the nucleus before using saveNuc.

__
saveport (--)

Calls the QuickDraw routine GetPort to get a pointer to the current grafport's record on the
heap into the variable thePort. With savePort you can save the current status of a grafport,
and then restore it later with restPort. It is best to use popPort and pushPort.

Yerk Glossary 195

See also: restPort pushPort popPort
__
saveSig (-- YERK)

Yerk Glossary 196

Leaves the signature of the current application (whatever the nucleus has as an owner
signature); (four ASCII chars in one stack element). If you change the ownership of the Yerk
nucleus, 'saveSig' will tell you what it is.

__
saveType (-- COM)

Leaves the file type of a saved Yerk dictionary; (four ASCII chars in one stack element).
__
sCon (--) : name "textString"

 Defines string constants that return their address and length when executed. Be sure to leave
only one space between the end of the scon's name and the first quote, or a null string will
result. Do not use an extra space between the opening quote and your textString. Use scon
if you need a string more than once; use string literals, instead, if you only need a string
once.

Example: scon str1 " Federation of "
scon str2 " Bit-miners Unions."
str1 type str2 type <return>
Federation of Bit-miners Unions.

See also: ascii
__
ScreenBits (-- l t r b)

Leaves the dimension coordinates of your computer's main display. This is useful in
targeting your software for various screen sizes.

__
sCreate (addr len --)

An interface to Create; takes an addr-len pair representing a string. In the following
example sCreate creates a dummy word for reference, then compiles the source file selected
by the user. Subsequently, Forget task would clear the program from memory. (Module
compilation works this way.)

Example: : load new: loadfile " TASK" sCreate
txType 1 stdGet: topfile interpret: topfile
close: topfile drop remove: loadfile ;

__
scroll (dh dv --)

Moves the image in the current grafport dh pixels horizontally and dv pixels vertically.
Scroll is chiefly used by cr and will not work under all circumstances.

Yerk Glossary 197

__
select{ (n --)

Begins a select{ ... }select conditional structure. The select{ conditional structure is like the
case structure, except that the indexes must start at 0 and must be contiguous.

Yerk Glossary 198

The advantage of using select{ is that it executes faster and compiles smaller code than case, and
for this reason you should use it whenever applicable. Cannot be used within method
definitions.

Example: (n --) \ Print zero, one, two, or none of the above.
: testSelect

Select{
0 is{ ." Zero" }end
1 is{ ." One" }end
2 is{ ." Two" }end
Default{ ." None of the above"

}select ;

This is an immediate word
__
set-ctl-obj (^obj ctlHandle --)

Puts ^obj, the relative pointer to a control object, into the control record whose handle is
ctlHandle.

__
set-file (fcb --)

Puts the absolute address of a filename into the ioNamePtr field of the file control block at
address fcb.

__
setHsize (handle size --)

Sets this handle's size. This word is used by class handle - you should normally use the
setSize: method of class handle.

See also: getHsize
__
setName (fcb --) : " filename"

Sets the filename of the fcb to the quoted string after setname in the input stream.

Example: myFcb setName " Helter Skelter"
__
sFind Successful: (addr len -- pfa len T)

Unsuccessful: (addr len -- F)

Yerk Glossary 199

An interface to the primitive (find) that takes an addr-len pair representing a string. SFind
does not map your string to upper case, so it will not find lower case versions of your word.

Example: " HERE" sfind . . .
1 132 6982 0->

Yerk Glossary 200

See also: (find)
__
sign (sign d -- d)

Sign is normally used within a pictured numeric output expression to place a sign
immediately to the left of a converted numeric character string.

Example: -1 45 0 <# #s sign #> type <return>
-45 0->

See also: <# # #s #> hold
__
sin (fptr -- fptr)

Computes sin(x) of the floating point number pointed to by fptr.
__
smudge (--)

Makes the current word being defined unfindable. This is to prevent reentrancy.

Example: : bye smudge kill: iwin drop bye ; \ redefine 'bye' to kill the port
\ and call the older bye.

__
sony (--)

Changes the default disk drive to the internal drive.

See also: external
__
sort (ixAddr #elem compCFA --)

Sorts a list of 4 byte elements. ixAddr is the base address of the 0th element of the list
object. #elem is the number of items in the list to be sorted. compCFA is the CFA of the
comparison word for use in the sort. The stack comment for the comparison word must be
(val1 val2 -- result). The word must take two 4-byte values, val1 and val2, and return the
following result:

-1 -- val1 < val2
0 -- val1 = val2
1 -- val1 > val2

Example: : varComp -dup IF dup abs / THEN ;

: varSort { theObj compWord -- }

Yerk Glossary 201

theObj ?IsObj not Abort" argument is not an object."
ixaddr: theObj limit: theObj 'c varComp
sort ; \ do it !

By designing the comparison word appropriately, data of an arbitrary kind can be sorted. To
sort strings, for example, each element in the list object should be a pointer

Yerk Glossary 202

to a string; accordingly the comparison word would be based on $=. Sort is provided as a module.
See Part II.6 - Utility Modules.

See also: $=
__
sp! (--)

Initializes the parameter stack pointer, the address of the top cell, with the contents of value
s0, the base address of the return stack. sp!, in effect, clears the parameter stack.

see also: mp! rp!
__
sp@ (-- addr)

Leaves the current contents of the parameter stack pointer, the address of the top cell, on the
parameter stack.

See also: mp@ rp@
__
space (--)

Emits an ASCII blank character.
__
spaces (n --)

Emits n ASCII blank characters.
__
spList (-- ptr)

Leaves a pointer to the system's pattern list resource.

See also: syspat rsrc
__
sqrt (fptr -- fptr)

Computes √x of the floating point number pointed to by fptr.
__
srcCopy (-- 0)

Constant for QuickDraw srcCopy drawing mode.
__

Yerk Glossary 203

srcOr (-- 1)

Constant for QuickDraw srcOr drawing mode.
__
srcXor (-- 2)

Yerk Glossary 204

Constant for QuickDraw srcXor drawing mode.
__
state (-- compile-state)

This value is the compilation state of the Yerk interpreter. A non-zero value means that the
definition of a word, method, or class is being compiled.

See also: cstate ?comp
__
stdload (--)

Defined in source FrontEnd, this word will bring up a the standard getBox for files. The
selected text file will be loaded into Yerk.

See also: stdSave
__
stdSave (--)

Defined in source FrontEnd, this word will bring up a the standard saveBox for files. This
will save the application image to disk.

See also: stdLoad
__
stillDown? (-- bool)

Calls the Toolbox Event Manager routine stillDown to see if the mouse button is still down.
__
str, (here --)

Compiles the string at HERE into the dictionary. Used by abort" and " when in compile
mode.

__
str255 (addr len -- absAddr)

Converts an (addr-len format) string into a str255-format string at buf255 and leaves its
absolute address. You can use str255 to prepare strings for calls to Toolbox routines.

See also: buf255 >str255
__
suspend (--)

Yerk Glossary 205

This is a vector defaulted to nullcfa. The user may put in his own response to a multifinder
suspend event.

See also: resume mouseMoved cvtClip inForeGround

Yerk Glossary 206

__
swap (n1 n2 -- n2 n1)

Exchanges the top two single-precision stack values.

See also: 2swap
__
sys (-- 0)

Handles system clicks for object fEvent. A system click occurs when there is a mouse-down
event in a system window, like a desk accessory.

__
sysInit (--)

Initializes objects fEvent, fWind, and fEvent when Yerk starts up.
__
syspat (idx -- pattern)

Syspat returns the system pattern indicated by the idx value which can then be used by a
Yerk fill method for a graphical object:

Example: rect box
10 10 200 200 put: box
0 syspat fill: box

will black out that region of your screen. Patterns are defined in the resource type PAT#.
Common patterns are:

0 black
1 dark grey
2 medium gray
3 light gray

See also: splist
__
tan (fptr -- fptr)

Computes tan(x) of the floating point number pointed to by fptr.

See also: arctan
__
Task (--)

Yerk Glossary 207

Marker word used during module compilation. You can Forget TASK to restore the
dictionary whenever a module compilation fails. Should never be used as a word name,
especially within modules.

__
taskList (-- ^obj)

Yerk Glossary 208

This Ordered-col object contains up to four cfa's of words that are executed as background
tasks whenever object fEvent receives a null event. You can manipulate taskList with
addTask and killTask. This support is optional and is included in file "Tasks".

See also: addtask dotasks killtask
__
temprect (-- ^obj)

 This is a Rect object used by Yerk.
__

Yerk Glossary 209

tFace (face --)

Sets the txFace field of the current grafport to face. You can use tface to control the
typeface of the current font for the grafport.

See also: tFont tMode tSize initFont
__
tFont (font --)

Sets the txFont field of the current grafport to font. You can use tfont to change the font of
the current grafport.

 Example: 0 tfont \ Sets font to Chicago (=0).

Some fonts: 0 -- Chicago (system font)
1 -- Geneva (application font)
2 -- New York
3 -- Geneva
4 -- Monaco
5 -- Venice
6 -- London
7 -- Athens

See also: tFace tMode tSize initFont ?lead
__
theMenu (-- ^obj)

 A value that stores the pointer-to-object of the last menu clicked in.

See also: mitem menuID
__
theMouse (-- ^obj)

 This is the default Mouse object. See III.4 Events.
__
then Compile: (yerk --)

Run: (--)

Then ends an IF conditional.

Used in the form: IF … THEN
IF … ELSE … THEN

Yerk Glossary 210

This is an immediate word.
__
thumb (-- 129)

This constant is the part ID of the thumb in a scroll bar. See IM Control Manager.

Yerk Glossary 211

__
tib (-- addr)

This value is the address of the terminal input buffer, where characters typed at the keyboard
are stored.

__
tMode (mode --)

Sets the txMode field of the current grafport to mode. You can use tmode to change the text
drawing mode of the current grafport. See IM QuickDraw.

See also: tFace tFont tSize initFont
__
to1 Parameter Stack: (n i --)

Methods Stack: (^base -- ^base)

Stores n into the i-th one-byte element of the object whose ^base, pointer to the object's
data, is on the methods stack. To1 is the optimized store for indexed objects with one-byte
elements.

__
to2 Parameter Stack: (n i --)

Methods Stack: (^base -- ^base)

Stores n into the i-th 2-byte element of the object whose ^base, pointer to the object's data,
is on the methods stack. To2 is the optimized store for indexed objects with 2-byte
elements.

__
to4 Parameter Stack: (n i --)

Methods Stack: (^base -- ^base)

Stores n into the i-th 4-byte element of the object whose ^base, pointer to the object's data,
is on the methods stack. To4 is the optimized store for indexed objects with 4-byte
elements.

__
toggle (addr b --)

Exclusive-ORs the byte at addr with mask byte b.
__
TogItem (item# --)

Toggles check boxes and radio buttons. Make TOGITEM the action word for these type

Yerk Glossary 212

items in your dialog. Can only be used while the dialog box is active. This word is defined
in the file "dialog" and is an optional part of the system.

__
ToPad (addr --)

Moves the str255-format string at addr to pad+1.

Yerk Glossary 213

__
topFile (-- addr)

Topfile is a vect which executes the Last: method of the loadfile object, and allows late-
binding to the last element in the load file. It allows the following shorthand to be used if
you are using the filelist structure:

open: topfile
instead of:

open: [last: loadfile]
__
trace (--)

Provides a dump of the return stack, printing the pfa's of the words in the order they are
nested. You can use trace in debugging your programs.

Example: trace <return> \ Print the names of nested words.
67628
15650 0->

__
trap (trap# --)

Trap is the run-time component of Call. Trap causes the trap of the given number to be
actually executed (which may take other arguments from the stack). For a use of the word
trap, see the definition of the run time component of cursor in the file "qd".

__
trav (execCFA arg --)

Trav will execute the word represented by execCFA for every word in the dictionary, and
pass it the argument arg. The word to be executed can expect two words on the stack: the
argument and the cfa of a word in the dictionary.

Words could be coded this way using trav:

: printit { theCfa arg -- }
theCfa >name count $ 3F and type cr ?pause ;

: newWords 'c printit 0 trav ;
__
traverse (addr1 n -- addr2)

Moves across the name field of a definition. addr1 is the address of either the length byte
(the first byte of the name field) or the last byte; n = 1 for forward searches (toward high

Yerk Glossary 214

memory), and n = -1 for backward searches (toward low memory). Leaves addr2, the
address of the other end of the name field.

__
true (-- 1)

This constant is a boolean. You can use it whenever you need a true flag.

Yerk Glossary 215

See also: false not
__
trunc (fptr -- fptr)

Truncates the floating point number pointed to by fptr (rounds toward zero) and returns the
result.

__
tSize (tsize --)

Sets the txSize of the current grafport. You can use tsize to change the point size of the font
of the current grafport.

See also: tFace tFont tMode initFont
__
type (addr len --)

Prints an (addr-len format) string on the screen or printer, by executing the system vectors
typevec and ptypevec. When Yerk starts up, typevec is vectored to the primitive (type) that
prints a string on the screen, and ptypevec is vectored to 2drop. So the default action of type
is to print a string on the screen only. Type increments value OUT by len.

Example: " The Information Age is here." \ Leaves addr len.
type <return>
The Information Age is here. 0->

See also: ." ptype
__
typevec (addr len --)

This is the execution vector for type. When Yerk starts up, typevec is vectored to (type), the
primitive that prints a string on the screen.

__
type# (--) : resID

TYPE# is a cousin to TYPE except that its text resides in your resource data rather than in
the dictionary. At compile time takes the resID out of the input stream and compiles a
runtime primitive into the current word. At run time prints the string resource associated
with the given resID. The string can then be changed without recompiling any code.

__
txType (-- TEXT)

Yerk Glossary 216

Leaves the file type for text files; (four ASCII characters in one stack element).

See also: binType saveType
__

Yerk Glossary 217

u* "u-star" (u1 u2 -- ud)

Multiplies two unsigned numbers and leaves their unsigned double product.
__
u. (n --)

Prints the number on the stack as an unsigned number using the current base.
__
u/ "u-slash" (ud u1 -- u2 u3)

Divides u1, an unsigned number, into ud, an unsigned double number, leaving their
unsigned remainder, u2, and quotient, u3.

__
u< (u1 u2 -- bool)

Compares two unsigned single-precision numbers. If u1 is less than u2, leaves a true flag
(1); otherwise, leaves a false flag (0). Use u< when comparing memory addresses.

__
u> (u1 u2 -- bool)

Compares two unsigned numbers. If u1 is greater than u2, leaves a true flag (1); otherwise,
leaves a false flag (0). Use u> when comparing memory addresses.

__
ufind Successful: (-- pfa 0 T)

 Unsuccessful: (-- F)

This is a system vector that holds the cfa of a special purpose Find word. This Find will be
executed before the normal Yerk find. For further information, look under system vectors in
Part II.4.

__
unLock (handle --)

Unlocks the handle given on the stack.

See also: lock hGetState hSetState
__
unpack (x:y -- x y)

Unpacks a Toolbox point and puts the two integers on the stack. Unpack is the opposite of
pack.

Yerk Glossary 218

See also: i->l pack
__
until Compile: (yerk -- yerk)

Run: (bool --)

Yerk Glossary 219

At run time, UNTIL controls the conditional branch to the corresponding BEGIN. If
boolean is false, execution returns to the first word after BEGIN; otherwise, execution
continues forward.

Used in the form: BEGIN ... UNTIL

This is an immediate word
__
upd-evt (-- 0)

Handles an update event for the application by sending a draw: method to the window. This
word can be redefined through the use of :f or by substitution of vector 6 in fEvent.

See also: actv-evt disk-evt key-evt mouse-evt null-evt app4-evt
__
useWFont (-- n)

This is a constant defined by the toolbox that indicates that a control is to use the same font
as its owner window (the application font). The value should be added to the id for the
control.

Example: buttonID useWFont + init: aControlObject

would indicate to Yerk that this was a button that was to use the application font. This
constant is an optional part of the system and is defined in the file "ctl".

__
valCode (-- addr)

This constant returns the address of the code executed by value.

See also: colCode fvalCode modCode vectCode
__
value (n --) : name

Yerk's general-purpose data variable. See Part II.4.

See also: constant variable
__
variable (n --) : name

Creates the definition name and puts n in its parameter field address. When name is
executed later, its parameter field address is pushed onto the stack, so that a fetch (@) or
store (!) can access n. For general use, Value is more useful, but Variable can sometimes be

Yerk Glossary 220

handy to provide a Var parameter for the Toolbox.

Example: 12 variable dozen

See also: constant value

Yerk Glossary 221

__
vect (cfa --) : name

Execution variable that can hold and execute the cfa of a Yerk word. See Part II.4.
__
vectCode (-- addr)

This constant returns the address of the code executed by vect.

See also: colCode fvalCode modCode valCode
__
vsID (-- 16)

Returns a toolbox value to indicate that a given control is to be a scroll bar (either horizontal
or vertical). This word is an optional part of the system and is defined in the file "ctl".

See also: buttonID checkID radioID useWfont
__

w (-- 16-bit-value) : value

Pushed a 16-bit value onto the stack. This is more compact that placing a regular literal on
the stack followed by MAKEINT. When used within a program definition, compiles the
number as a special kind of literal.

See also: word0 makeint pack
__
w! (w addr --)

Stores the 16-bit number w into the memory word at addr.
__
w+! (i addr --)

Adds the 16-bit increment i to the memory word at addr.
__
w, (w --)

Stores the 16-bit number w into the next available dictionary memory word, and advances
the dictionary pointer by two bytes.

__
w@ (addr -- w)

Fetches the (16-bit) memory word at addr and pushes it onto the stack.

Yerk Glossary 222

__
waitClick (--)

Loops until the user either clicks the mouse or presses a key.
__

Yerk Glossary 223

watchCurs (--)

Changes the cursor currently in use to the watch cursor, that is used to indicate that
processing is occurring.

See also: crosscurs ibeamcurs pluscurs cursor
__
while Compile: (yerk -- yerk)

Run: (bool --)

At run time, if the boolean on top of stack is true, the words between WHILE and REPEAT
are executed; otherwise, execution resumes at the first word after REPEAT.

Used in the form: BEGIN ... WHILE ... REPEAT

This is an immediate word.
__
wlit (-- n)

Pushes the (16-bit) memory word at the next dictionary address onto the stack. Within a
colon definition, wlit is automatically compiled before each single-precision number less
than or equal to 65,535 encountered in the input text.

See also: lit literal
__
word (chr --)

Reads characters from the input stream being interpreted until a delimiter chr is
encountered; stores the text string at the dictionary buffer HERE. Stores the character count
in the first byte, the characters in the following bytes, ending with two or more blanks.
Leading occurrences of chr are ignored.

__
word" (-- addr) : "textString"

Word" takes the "-delimited string from the input stream and stores it at HERE, and then
returns that address for further processing. Word" does not map to uppercase.

__
word0 "word-zero" (-- 16-zero-bits)

Pushes 16 zero bits (hex 0000) onto the stack. You can use word0 to prepare for a Toolbox
function call for the result, if the function returns a Toolbox integer.

__
words (--)

Yerk Glossary 224

Prints the names and addresses of all entries in the dictionary beginning with the last entry.
Also try keyboard short cut: Command-W.

__
x**y (fptr:x fptr:y -- fptr)

Yerk Glossary 225

Computes xy for the floating point arguments provided.
__
xor (n1 n2 -- n3)

Leaves the bitwise exclusive-OR of n1 and n2 as n3. Xor works as a logical xor if you
want to use n1, n2, and n3 as booleans (non-zero = true; zero = false).

See also: toggle or and Lxor
__
yerk (--)

This word executes the startup routines that initialize the menu bar, draw the window, and
executes the Sysinit vector.

See also: cold
__
yerk>int (--)

Places the Yerk interpreter into integer mode. Defined in YerkFP.com.
__
yerk>flt (--)

Places the Yerk interpreter into float mode. Defined in YerkFP.com
__
[(--)

Begins an expression within a late-bound message that computes the address of the object to
receive the message.

Example: key: [frontWind] \ frontWind computes the address of the
\ front-most window.

This is an immediate word.
See also: <[c[

__
[compile] (--) : word

Forces the compilation of an immediate word that would otherwise execute during the
compilation of xxx. Here, WHILE will be compiled into the definition of xxx, instead of
executing during compilation.

 Used in the form: : xxxx [COMPILE] WHILE ;

Yerk Glossary 226

This is an immediate word.
See also: compile

__
\ (--)

Yerk Glossary 227

Begins a comment which is to continue to the end-of-line. In a stack comment in braces, \
flags the following words up to the '--' as local variables.

Example: \ This is an end-of-line comment begun with '\'.

: aWord { a b \ temp index -- } ... ;
\ '\' before temp and index indicates they are local vars.

This is an immediate word.
__
] (--)

Ends an expression within a late-bound message that computes the address of the object to
receive the message.

Example: key: [frontWind] \ frontWind computes the address of the
\ front-most window.

This is an immediate word.
__
]> (--)

Enters compile state. Sets state = non-zero.]> is used in conjunction with <[.

 Example: : aWord ...
<[3]> 'cfas doGraph doPict doText ... ;
\ <[is used to put the interpreter in run state temporarily because
\ 'cfas needs the count of cfa's to compile on the stack;]> resumes
\ compilation.

__
]c (--)

Enters class compilation state. Sets cstate = non-zero.]c is used in conjunction with c[.

This is an immediate word.
__
^base Parameter Stack: (-- ^base)

Methods Stack: (^base -- ^base)

Pushes the base address of the private data of the object by copying the address from the
methods stack.

See also: copym (abs)
__

Yerk Glossary 228

^class (-- ^class)

Returns a pointer to the class currently being compiled.
__
^elem Parameter Stack: (i -- addr)

Yerk Glossary 229

Methods Stack: (^base -- ^base)

Returns the address of the i-th element of the indexed object whose address is on the
methods stack.

__
{ (--)

Begins definition of named instance variables and local variables for a Yerk word or method.
Each blank-delimited name following the curly brace will be considered either a named
input parameter, which assigns a name to a stack cell, or a local variable, an uninitialized 32-
bit cell for the word or method to use as temporary storage. The list of named parameters is
separated from the local variables by a backslash. Yerk permits a maximum total of six
named parms plus local variables. Two hyphens terminate the list, and everything
following the hyphens up to and including the right curly brace is considered a comment.

Example: : aWord { parmOne parmTwo \ locVar1 locVar2 -- }

This is an immediate word.

__
} (--)

Ends definition of named instance variables and local variables. You can have up to six total
of both.

Example: : aWord { parmOne parmTwo \ locVar1 locVar2 -- }
... ; \ more code

__
}end (--)

Ends a clause in a select{ ... }select conditional structure.

This is an immediate word.
__
}select (--)

Ends a select{ ... }select conditional structure. The select{ conditional structure is like the
case structure, except that the indexes must start at 0 and must be contiguous. The
advantage of using select{ is that it executes faster than case, and for this reason you should
use it whenever applicable.

Example: (n --) \ Print zero, one, two, or none of the above.
: testSelect
Select{

Yerk Glossary 230

0 is{ ." Zero" }end
1 is{ ." One" }end
2 is{ ." Two" }end
Default{ ." None of the above"

}select ;

Yerk Glossary 231

This is an immediate word.

